某同學參加科普知識競賽,需回答3個問題。競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得零分。假設這名同學答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題目答對與否相互之間沒有影響。

    (1)求這名同學得300分的概率;

    (2)求這名同學至少得300分的概率。

   

思路解析:本題主要考查相互獨立事件同時發(fā)生的概率和互斥事件有一人發(fā)生的概率的計算方法,考查考生應用概率知識解決問題的能力。

    答案:記“這名同學答對第i個問題”為事件Ai(i=1,2,3),則P(A1)=0.8,P(A2)=0.7,P(A3)=0.6。

(1)這名同學得300分的概率為:

P1=P(A1∩A2∩A3)+P(A1∩A2∩A3)=P(A1)P(A2)P(A3)+P(A1)P(A2)P(A3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228。

(2)這名同學至少得300分的概率為:

P2=P1+P(A1∩A2∩A3)=0.228+P(A1)P(A2)P(A3)=0.228+0.8×0.7=0.564。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某同學參加科普知識競賽,需回答3個問題.競賽規(guī)則規(guī)定:答對第一、二、三問題分別得100分、100分、200分,答錯得零分.假設這名同學答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響.
(Ⅰ)求這名同學得300分的概率;
(Ⅱ)求這名同學至少得300分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

19、某同學參加科普知識競賽,需回答三個問題.競賽規(guī)則規(guī)定:每題回答正確得100分,回答不正確得-100分.假設這名同學每題回答正確的概率均為0.8,且各題回答正確與否相互之間沒有影響.
(Ⅰ)求這名同學回答這三個問題的總得分ξ的概率分布和數(shù)學期望;
(Ⅱ)求這名同學總得分不為負分(即ξ≥0)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•昆明模擬)某同學參加科普知識競賽,需回答3個問題,其中包括2個選擇題和1個填空題.競賽規(guī)則規(guī)定:每題回答正確得100分,回答不正確得-100分.假設這位同學每個選擇題回答正確的概率均為
4
5
,填空題回答正確的概率為
1
2
,且各題回答正確與否互不影響.
(I)求這名同學恰好回答正確2個問題的概率;
(II)求這名同學回答這3個問題的總得分ξ的概率分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•昆明模擬)某同學參加科普知識競賽,需回答3個問題,其中包括2個選擇題和1個填空題.競賽規(guī)則規(guī)定:每題回答正確得100分,回答不正確得-100分.假設這位同學每個選擇題回答正確的概率均為
4
5
,填空題回答正確的概率為
1
2
,且各題回答正確與否互不影響.
(I)求這名同學回答這三個問題都不正確的概率;
(II)求這名同學回答這三個問題的總得分為正分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(04年全國卷IV理)(12分)

某同學參加科普知識競賽,需回答三個問題.競賽規(guī)則規(guī)定:每題回答正確得100分,回答不正確得-100分.假設這名同學每題回答正確的概率均為0.8,且各題回答正確與否相互之間沒有影響.

(Ⅰ)求這名同學回答這三個問題的總得分的概率分布和數(shù)學期望;

(Ⅱ)求這名同學總得分不為負分(即≥0)的概率.

查看答案和解析>>

同步練習冊答案