數(shù)列)由下列條件確定:①;②當(dāng)時(shí),滿足:當(dāng)時(shí),,;當(dāng)時(shí),,.

(Ⅰ)若,,寫出,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)在數(shù)列中,若(,且),試用表示;

(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列滿足,,

(其中為給定的不小于2的整數(shù)),求證:當(dāng)時(shí),恒有.

解: (Ⅰ)由題得過兩點(diǎn),直線的方程為.………… 1分

 因?yàn)?sub>,所以,.

 設(shè)橢圓方程為,

  由消去得,.

又因?yàn)橹本與橢圓相切,所以,解得.

 所以橢圓方程為.     ……………………………………………… 5分

(Ⅱ)易知直線的斜率存在,設(shè)直線的方程為,…………………… 6分

 由消去,整理得.  ………… 7分

   由題意知

  解得.   ……………………………………………………………… 8分

 設(shè),,,.      …… 9分

又直線與橢圓相切,

  由解得,所以. ……………………………10分

 則. 所以.

  又

           

           

           

           

          

   所以,解得.經(jīng)檢驗(yàn)成立.   …………………… 13分

     所以直線的方程為.   …………………… 14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分14分)

數(shù)列,)由下列條件確定:①;②當(dāng)時(shí),滿足:當(dāng)時(shí),,;當(dāng)時(shí),,.

(Ⅰ)若,,寫出,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)在數(shù)列中,若(,且),試用表示;

(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列滿足,,

(其中為給定的不小于2的整數(shù)),求證:當(dāng)時(shí),恒有.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{xn}由下列條件確定:x1a>0,xn1xn),n∈N.

(1)證明對(duì)n≥2總有xn;

(2)證明對(duì)n≥2總有xnxn1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{xn}由下列條件確定:x1a>0,xn1xn),n∈N.

(1)證明對(duì)n≥2總有xn;

(2)證明對(duì)n≥2總有xnxn1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列,)由下列條件確定:①;②當(dāng)時(shí),滿足:當(dāng)時(shí),,;當(dāng)時(shí),,.

(Ⅰ)若,,求,,,并猜想數(shù)列的通項(xiàng)公式(不需要證明);

(Ⅱ)在數(shù)列中,若(,且),試用表示,;

(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列滿足, (其中為給定的不小于2的整數(shù)),求證:當(dāng)時(shí),恒有.

查看答案和解析>>

同步練習(xí)冊(cè)答案