命題p:如果x2+y2=0,則x,y都為0;命題q:如果a2>b2,則a>b.給出下列命題①p∧q②p∨q ③?p④?q,其中真命題是( 。
A、①②B、①③C、②③D、②④
考點(diǎn):復(fù)合命題的真假
專(zhuān)題:簡(jiǎn)易邏輯
分析:首先,分別判斷兩個(gè)命題的真假,然后,根據(jù)復(fù)合命題的真假進(jìn)行判斷.
解答: 解:對(duì)于命題p:如果x2+y2=0,則x,y都為0; 
此時(shí)命題為真命題,
命題q:a2>b2
∴|a|>|b|,
∴命題q為假命題,
∴①p∧q為假命題;
②p∨q 真命題;
③?p為假命題;
④?q為真命題,
∴②④為真命題;
故選:D.
點(diǎn)評(píng):本題重點(diǎn)考查了命題的真假判斷、復(fù)合命題的構(gòu)成、復(fù)合命題的真值表等知識(shí),屬于中檔題.解題關(guān)鍵是靈活運(yùn)用復(fù)合命題的真假進(jìn)行判斷其真假.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(a+lnx)有極小值-e-2
(1)求實(shí)數(shù)a的值;
(2)若k∈Z,且k<
f(x)
x-1
對(duì)任意x>1恒成立,求k的最大值;
(3)當(dāng)n>m>1,(n,m∈Z)時(shí),證明:(mnnm>(nmmn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x-4
x
+m,當(dāng)0≤x≤9時(shí),f(x)≥1恒成立,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,n),
b
=(-1,n),若2
a
+
b
b
垂直,則|
a
|=(  )
A、1
B、
2
C、
2
3
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

應(yīng)用函數(shù)單調(diào)性定義證明:函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為2cm的⊙O與邊長(zhǎng)為2cm的正方形ABCD在水平直線l的同側(cè),⊙O與l相切于點(diǎn)F,DC在l上.

(1)過(guò)點(diǎn)B作圓的一條切線BE,E為切點(diǎn).
①如圖1,當(dāng)點(diǎn)A在⊙O上時(shí),求∠EBA的度數(shù);
②如圖2,當(dāng)E,A,D三點(diǎn)在同一直線上時(shí),求線段OA的長(zhǎng);
(2)以正方形ABCD的邊AD與OF重合的位置為初始位置,向左移動(dòng)正方形(圖3),至邊BC與OF重合時(shí)結(jié)束移動(dòng),M,N分別是邊BC,AD與⊙O的公共點(diǎn),求扇形MON的面積的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5],求y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的對(duì)數(shù)1gx=31gn-1gm,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且函數(shù)f(x)只有一個(gè)零點(diǎn)-1.
(1)求f(x)表達(dá)式;
(2)當(dāng)x∈[-2,k]時(shí),求函數(shù)f(x)的最小值;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=5x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案