3.從裝有兩個白球、兩個黑球的袋中任意取出兩個球,取出一個白球一個黑球的概率為$\frac{2}{3}$.

分析 先求出基本事件總數(shù),再求出取出一個白球一個黑球包含的基本事件個數(shù),由此利用等可能事件概率計算公式能求出取出一個白球一個黑球的概率.

解答 解:∵從裝有兩個白球、兩個黑球的袋中任意取出兩個球,
∴基本事件總數(shù)n=${C}_{4}^{2}$=6,
取出一個白球一個黑球包含的基本事件個數(shù)m=${C}_{2}^{1}{C}_{2}^{1}$=4,
∴取出一個白球一個黑球的概率p=$\frac{m}{n}$=$\frac{4}{6}$=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線m與拋物線C交于P(x1,2$\sqrt{2}$)、Q(x2,y2)兩點,則y2等于(  )
A.-2B.-2-$\sqrt{2}$C.2$\sqrt{2}$-3D.8-6$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知圓的方程為x2+(y-1)2=4,若過點$P({1,\frac{1}{2}})$的直線l與此圓交于A,B兩點,圓心為C,則當∠ACB最小時,直線l的方程為( 。
A.4x-2y-3═0B.x+2y-2═0C.4x+2y-3═0D.x-2y+2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知橢圓mx2+ny2=1與直線x+y-1=0相交于A,B兩點,過AB中點M與坐標原點的直線的斜率為$\frac{{\sqrt{2}}}{2}$,則$\frac{m}{n}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,把一塊邊長是a的正方形鐵片的各角切去大小相同的小正方形,再把它的邊沿著虛線折轉(zhuǎn)作成一個無蓋方底的盒子,問切去的正方形邊長是多少時,才能使盒子的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.執(zhí)行如圖的程序框圖,輸出s和n,則s的值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\frac{x}{x-2}$,則f′(1)=( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=x3-3x,若對于區(qū)間[-3,2]上任意的x1,x2都有|f(x1)-f(x2)|≤t,則實數(shù)t的最小值是( 。
A.0B.10C.18D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-3|-3,g(x)=-|x+1|+4.
(1)若函數(shù)f(x)值不大于2,求x的取值范圍;
(2)若不等式f(x)-g(x)≥m+1的解集為R,求m的取值范圍.

查看答案和解析>>

同步練習冊答案