10.從1,2,3,4中任取兩個數(shù),記作a,b,則兩數(shù)之和a+b小于5的概率為( 。
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 先同基本事件總數(shù)n=${A}_{4}^{2}=12$,再求出兩數(shù)之和a+b小于5包含的基本事件,由此能求出兩數(shù)之和a+b小于5的概率.

解答 解:從1,2,3,4中任取兩個數(shù),記作a,b,
基本事件總數(shù)n=${A}_{4}^{2}=12$,
兩數(shù)之和a+b小于5包含的基本事件有:
(1,2),(2,1),(1,3),(3,1),
共有m=4個,
故兩數(shù)之和a+b小于5的概率p=$\frac{m}{n}=\frac{4}{12}=\frac{1}{3}$.
故選:D.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C:x2=2py(p>0)的焦點為F,過拋物線上一點P作拋物線C的切線l交x軸于點D,交y軸于點Q,當(dāng)|FD|=2時,∠PFD=60°.
(1)判斷△PFQ的形狀,并求拋物線C的方程;
(2)若A,B兩點在拋物線C上,且滿足$\overrightarrow{AM}+\overrightarrow{BM}=0$,其中點M(2,2),若拋物線C上存在異于A、B的點H,使得經(jīng)過A、B、H三點的圓和拋物線在點H處有相同的切線,求點H的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面內(nèi)兩點A(4,0),B(0,2)
(1)求過P(2,3)點且與直線AB平行的直線l的方程;
(2)設(shè)O(0,0),求△OAB外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知A(-1,2),B(-2,4),則直線AB的斜率為( 。
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△OBC中,點A是線段BC的中點,點D是線段OB的一個靠近O的三等分點,設(shè)$\overrightarrow{OB}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow$
(1)用向量$\overrightarrow{a}$與$\overrightarrow$表示向量$\overrightarrow{OA}$;
(2)若點E是線段OA靠近A的三等分點,證明$\overrightarrow{DE}$平行于$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥面ABCD,EF∥AB,AB=2,EB=$\sqrt{3}$的中點.
(1)求證:EM∥平面ADF;
(2)求二面角D-AF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.從0到9這10個數(shù)字中任取3個數(shù)字組成一個沒有重復(fù)數(shù)字的三位數(shù),這個數(shù)能被3整除的概率為$\frac{19}{54}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.拋物線x2=ay上有一點A(x0,2),它到焦點的距離是3,則其標(biāo)準(zhǔn)方程是( 。
A.x2=yB.x2=2yC.x2=3yD.x2=4y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過橢圓$\frac{x^2}{9}+\frac{y^2}{3}=1$上一點$M(\sqrt{3}$,$\sqrt{2})$作直線MA、MB交橢圓于A、B兩點,若MA與MB的斜率互為相反數(shù),則直線AB的斜率為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步練習(xí)冊答案