【題目】某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)促銷活動(dòng),規(guī)定每位顧客從裝有0、1、23的四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球記下編號(hào)后放回(連續(xù)取兩次),若取出的兩個(gè)小球的編號(hào)相加之和等于6,則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于43中三等獎(jiǎng),則顧客抽獎(jiǎng)中三等獎(jiǎng)的概率為____________

【答案】

【解析】

基本事件總數(shù)n4×416,利用列舉法求出顧客抽獎(jiǎng)中三等獎(jiǎng)包含的基本事件有7種,由此能求出顧客抽獎(jiǎng)中三等獎(jiǎng)的概率.

解:規(guī)定每位顧客從裝有01、23的四個(gè)相同小球的抽獎(jiǎng)箱中,

每次取出一球記下編號(hào)后放回(連續(xù)取兩次),

若取出的兩個(gè)小球的編號(hào)相加之和等于6,則中一等獎(jiǎng),

等于5中二等獎(jiǎng),等于43中三等獎(jiǎng),

基本事件總數(shù)n4×416,

顧客抽獎(jiǎng)中三等獎(jiǎng)包含的基本事件有:

0,3),(3,0),(1,2),(2,1),(1,3),(3,1),(2,2),共7種,

∴顧客抽獎(jiǎng)中三等獎(jiǎng)的概率為p

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為是拋物線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線軸的交點(diǎn),是面積為的直角三角形.

1)求拋物線的方程;

2)點(diǎn)在拋物線上,是直線上不同的兩點(diǎn),且線段的中點(diǎn)都在拋物線上,試用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是圓上的一動(dòng)點(diǎn),點(diǎn),點(diǎn)在線段上,且滿足.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)曲線軸的正半軸,軸的正半軸的交點(diǎn)分別為點(diǎn),,斜率為的動(dòng)直線交曲線、兩點(diǎn),其中點(diǎn)在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和的直角坐標(biāo)方程;

2)設(shè)是曲線上一點(diǎn),此時(shí)參數(shù),將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)交曲線于點(diǎn),記曲線的上頂點(diǎn)為點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

Ⅰ)若,證明:函數(shù)上單調(diào)遞減;

Ⅱ)是否存在實(shí)數(shù),使得函數(shù)內(nèi)存在兩個(gè)極值點(diǎn)?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由. (參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于下列命題:①對(duì)于實(shí)數(shù),若,則;②的充分而不必要條件;③在(增減算法統(tǒng)宗》中有這樣一則故事: 三百七十八里關(guān),初行健步不為難;次日腳痛減一半,如此六日過其關(guān)則此人第二天走了九十六里路;④設(shè)函數(shù)的定又域?yàn)?/span>R,若存在常數(shù):,使對(duì)一切實(shí)數(shù)x均成立、則稱倍約束函數(shù),所以函數(shù)"倍約束函數(shù)其中所有真命題的序號(hào)是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺(tái)綜合頻道和唯眾傳媒聯(lián)合制作的《開講啦》是中國(guó)首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國(guó)青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時(shí)也在討論青春中國(guó)的社會(huì)問題,受到青年觀眾的喜愛,為了了解觀眾對(duì)節(jié)目的喜愛程度,電視臺(tái)隨機(jī)調(diào)查了、兩個(gè)地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中非常滿意的觀眾的概率為0.4

非常滿意

滿意

合計(jì)

35

10

  

  

合計(jì)

  

  

  

1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取非常滿意地區(qū)的人數(shù)各是多少.

2)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.

0.050

0.010

0.001

3.841

6.635

10.828

附:參考公式:.

3)若以抽樣調(diào)查的頻率為概率,從兩個(gè)地區(qū)隨機(jī)抽取2人,設(shè)抽到的觀眾非常滿意的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)fx)在(0,+∞)上是減函數(shù),其實(shí)數(shù)m的取值范圍;

2)若函數(shù)fx)在(0,+∞)上存在兩個(gè)極值點(diǎn)x1,x2,證明:lnx1+lnx22

查看答案和解析>>

同步練習(xí)冊(cè)答案