已知函數(shù)f(x)=x3+ax2+ax+b的圖象過點P(0,2),且在x=-1處的切線斜率為6.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間.
分析:(Ⅰ)函數(shù)過P點,把P坐標代入到f(x)中得到b的值,又因為函數(shù)在x=-1處的切線斜率為6得到(-1,6)在導(dǎo)函數(shù)上,求出導(dǎo)函數(shù)代入求出a即可;
(Ⅱ)要求函數(shù)的單調(diào)區(qū)間令導(dǎo)函數(shù)等于0求出駐點討論導(dǎo)函數(shù)的正負判斷函數(shù)的單調(diào)區(qū)間即可.
解答:解:(Ⅰ)f'(x)=3x2+2ax+a.
由題意知
f(0)=b=2
f′(-1)=3-2a+a=6
,解得
a=-3
b=2

∴f(x)=x3-3x2-3x+2.
(Ⅱ)f'(x)=3x2-6x-3.
令3x2-6x-3=0,即x2-2x-1=0.
解得x1=1-
2
,x2=1+
2

當(dāng)x<1-
2
,或x>1+
2
時,f′(x)>0
;
當(dāng)1-
2
<x<1+
2
時,f′(x)<0

∴f(x)的單調(diào)遞增區(qū)間為:(-∞,1-
2
)
(1+
2
,+∞)
,
f(x)的單調(diào)遞減區(qū)間為:(1-
2
 ,1+
2
)
點評:此題考查學(xué)生利用待定系數(shù)的方法求函數(shù)解析式的運用能力,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的能力,以及理解直線斜率的意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案