12.圓x2+2x+y2+4y-3=0上到直線x+y+1=0的距離為$3\sqrt{2}$的點共有(  )
A.4個B.3個C.2個D.1個

分析 化圓的一般方程為標(biāo)準(zhǔn)式,求出圓心坐標(biāo)和半徑,求出圓心到直線的距離,結(jié)合圖形答案可求.

解答 解:由x2+y2+2x+4y-3=0,得
(x+1)2+(y+2)2=8.
∴圓的圓心坐標(biāo)為(-1,-2),半徑為2$\sqrt{2}$.
∵圓心(-1,-2)到直線x+y+1=0的距離為$\frac{|-1-2+1|}{\sqrt{2}}$=$\sqrt{2}$.
如圖,
∴圓上滿足到直線x+y+1=0的距離為3$\sqrt{2}$的點只有1個,
是過圓心且與直線x+y+1=0垂直的直線與圓的交點A.
故選:D.

點評 本題考查了點到直線的距離公式,考查了圓的一般式方程,訓(xùn)練了數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.全集U=R,集合A={x|x-2<0},B={x|x+1<0},那么集合A∩(∁UB)等于( 。
A.{x|-1<x<2}B.{x|-1≤x<2}C.{x|x≥-1}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為60°,且$|\overrightarrow{AB}|=|\overrightarrow{AC}|=2$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+\overrightarrow{AC}$,且$\overrightarrow{AP}⊥\overrightarrow{BC}$,則實數(shù)λ的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=$\frac{\sqrt{16-{x}^{2}}}{lo{g}_{2}(|x|+x)}$,則它的定義域是(0,$\frac{1}{2}$)∪($\frac{1}{2}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)i為虛數(shù)單位,復(fù)數(shù)z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)為純虛數(shù),則a的值為( 。
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知:$A_n^4=40C_n^5$,設(shè)$f(x)={(x-\frac{1}{{\root{3}{x}}})^n}$.
(1)求n的值;
(2)寫出f(x)的展開式中所有的有理項;
(3)求f(x)的展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={x|y=lgx},$B=\left\{{x\left|{\frac{2x+1}{3-x}}\right.<0}\right\}$,則A∩B=( 。
A.$(-∞,-\frac{1}{2})$B.(3,+∞)C.$(-∞,-\frac{1}{2})∪(3,+∞)$D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.三棱柱ABC-A1B1C1中,A1-AC-B是直二面角,AA1=A1C=AC=2,AB=BC,且∠ABC=90°,O為AC的中點.
(Ⅰ)若E是BC1的中點,求證:OE∥平面A1AB;
(Ⅱ)求二面角A-A1B-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若平面向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$-2$\overrightarrow$=(2$\sqrt{3}$,-1),$\overrightarrow b-2\overrightarrow a=({-\sqrt{3},-1})$,則$\overrightarrow a$與$\overrightarrow b$的夾角是( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊答案