橢圓
x2
m2
+
y2
n2
=1(m>n>0)
和雙曲線
x2
a2
-
y2
b2
=1(a>b>0)
的公共焦點(diǎn)為F1,F(xiàn)2,P是兩曲線的一個(gè)交點(diǎn),那么|PF1|•|PF2|的值是( 。
分析:不妨設(shè)P在雙曲線的右支上,則|PF1|+|PF2|=2m,|PF1|-|PF2|=2a,由此即可求得|PF1|•|PF2|的值.
解答:解:由題意,不妨設(shè)P在雙曲線的右支上,則|PF1|+|PF2|=2m,|PF1|-|PF2|=2a
∴|PF1|=m+a,|PF2|=m-a
∴|PF1|•|PF2|=m2-a2
故選B.
點(diǎn)評(píng):本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程,考查橢圓、雙曲線的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為
1
2
,則此橢圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
m2
+
y2
n2
=1
,雙曲線
x2
m2
-
y2
n2
=1
、拋物線y2=2(m+n)x(其中m>n>0)的離心率分別為e1,e2,e3,則( 。
A、e1e2>e3
B、e1e2<e3
C、e1e2=e3
D、e1e2與e3大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
m2
+
y2
n2
=1
(m>0,n>0)的一個(gè)焦點(diǎn)與拋物線x2=4y的焦點(diǎn)相同,離心率為
1
3
則此橢圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,P為橢圓
x2
m2
+
y2
n2
=1(m,n>0)上不同的三點(diǎn),且A,B連線經(jīng)過坐標(biāo)原點(diǎn),若直線PA,PB的斜率乘積kPA•kPB=-2,則該橢圓的離心率為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為
1
2
,求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)雙曲線與橢圓
x2
27
+
y2
36
=1有相同的焦點(diǎn),且與橢圓相交,一個(gè)交點(diǎn)A的縱坐標(biāo)為4,求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案