16.隨機(jī)變量ξ的分布列如下,且滿足E(ξ)=2,則E(aξ+b)的值( 。
ξ123
Pabc
A.0B.1
C.2D.無法確定,與a,b有關(guān)

分析 由隨機(jī)變量ξ的分布列及數(shù)學(xué)期限望得到:a+2b+3c=2,且a+b+c=1,從而2a+b=1,由此能求出E(aξ+b).

解答 解:∵E(ξ)=2,
∴由隨機(jī)變量ξ的分布列得到:a+2b+3c=2,
又a+b+c=1,
解得a=c,∴2a+b=1,
∴E(aξ+b)=aE(ξ)+b=2a+b=1.
故選:B.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法及應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.橢圓$\frac{x^2}{{4{a^2}}}+\frac{y^2}{{3{a^2}}}=1$(a>0)的左焦點(diǎn)為F,直線x=m與橢圓相交于點(diǎn)A、B,則△FAB的周長(zhǎng)的最大值是8a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知x=lnx,y=log52,z=e-0.5,則( 。
A.x<y<zB.x<z<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l:y=2x+m與曲線y=-$\sqrt{4-{x}^{2}}$有兩個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.[-2$\sqrt{5}$,-4]B.(-2$\sqrt{5}$,-4]C.[-2$\sqrt{5}$,-4)D.(-2$\sqrt{5}$,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=ax+lnx,g(x)=x2-2x+2.若對(duì)任意x1∈(0,+∞),存在x2∈[0,1],使得f(x1)<g(x2),則實(shí)數(shù)a的取值范圍是(-∞,-$\frac{1}{{e}^{3}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某木材加工流程圖如圖所示,則木材在封底漆之前需要經(jīng)過的工序有( 。
A.9道B.8道C.7道D.6道

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若$\overrightarrow{a}$=(2,3,-1),$\overrightarrow$=(-2,1,3),則|$\overrightarrow{a}$-$\overrightarrow$|的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C與圓D:(x-1)2+(y+2)2=4關(guān)于直線y=x對(duì)稱.
(Ⅰ) 求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+1與圓C交于A、B兩點(diǎn),且$|{AB}|=2\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長(zhǎng)分別為方程${x^2}-2({1+\sqrt{3}})x+4\sqrt{3}=0$的兩個(gè)實(shí)數(shù)根,若斜邊BC上有異于端點(diǎn)的E,F(xiàn)兩點(diǎn),且EF=1,∠EAF=θ,則tanθ的取值范圍為( 。
A.$({\frac{{\sqrt{3}}}{3},\frac{{4\sqrt{3}}}{11}}]$B.$({\frac{{\sqrt{3}}}{9},\frac{{\sqrt{3}}}{3}})$C.$({\frac{{\sqrt{3}}}{9},\frac{{4\sqrt{3}}}{11}}]$D.$({\frac{{\sqrt{3}}}{9},\frac{{2\sqrt{3}}}{11}}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案