【題目】下列說法正確的個數(shù)是( )
①命題“若,則,中至少有一個不小于2”的逆命題是真命題
②命題“設(shè),若,則或”是一個真命題
③“,”的否定是“,”
④已知,都是實數(shù),“”是“”的充分不必要條件
A.1B.2C.3D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生對傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識競賽.
(1)根據(jù)題目條件完成下邊列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為學(xué)生的傳統(tǒng)文化知識競賽成績優(yōu)秀與文理分科有關(guān).
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 | |
甲班 | |||
乙班 | 20 | ||
總計 | 60 |
(2)現(xiàn)已知,,三人獲得優(yōu)秀的概率分別為,,,設(shè)隨機(jī)變量表示,,三人中獲得優(yōu)秀的人數(shù),求的分布列及期望.
附:,.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,過曲線外的一點(其中,為銳角)作平行于的直線與曲線分別交于.
(Ⅰ) 寫出曲線和直線的普通方程(以極點為原點,極軸為 軸的正半軸建系);
(Ⅱ)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的左右焦點分別為,左右項點分別為,點是上的動點.
(1)若點在第一象限, 且,求點的坐標(biāo);
(2)點與不重合,直線分別交軸于兩點,求證: ;
(3)若點在左支上,是否存在實數(shù),使得到直線的距離與之比為定值?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列與滿足,.
(1)若,且,求的通項公式;
(2)設(shè)的第項是最大項,即,求證:的第項是最大項;
(3)設(shè),求的取值范圍,使得有最大值與最小值,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在常數(shù),使得數(shù)列滿足:若是數(shù)列中的一項,則也是數(shù)列 中的一項,稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求和的值;
(2)已知有窮等差數(shù)列的項數(shù)是,所有項之和是,求證:數(shù)列是“兌換數(shù)列”,并用和表示它的“兌換系數(shù)”;
(3)對于一個不小于3項,且各項皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“類函數(shù)”,求是實數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(,),,且函數(shù)圖像上的任意兩條對稱軸之間距離的最小值是.
(1)求的值和的單調(diào)增區(qū)間;
(2)將函數(shù)的圖像向右平移個單位后,得到函數(shù)的圖像,求函數(shù)在上的最值,并求取得最值時的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)是否存在非負(fù)整數(shù),使得函數(shù)是單調(diào)函數(shù),若存在,求出的值;若不存在,請說明理由;
(3)已知,若存在,使得當(dāng)時,的最小值是,求實數(shù)的取值范圍.(注:自然對數(shù)的底數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com