分析 (1)根據(jù)條件利用待定系數(shù)法進(jìn)行求解即可.
(2)根據(jù)函數(shù)奇偶性的定義進(jìn)行證明,
(3)根據(jù)函數(shù)單調(diào)性的定義進(jìn)行證明即可.
解答 解:(1)∵f(x)=2x+2ax(a為實(shí)數(shù)),且f(1)=$\frac{5}{2}$.
∴f(1)=2+2a=$\frac{5}{2}$.得2a=$\frac{1}{2}$,即a=-1,
則函數(shù)f(x)的解析式f(x)=2x+2-x;
(2)f(-x)=2-x-2x=-(2x-2-x)=-f(x),
則函數(shù)f(x)是奇函數(shù).
(3)設(shè)0≤x1<x2,f(x1)-f(x2)=${2}^{{x}_{1}}$-$\frac{1}{{2}^{{x}_{1}}}$-${2}^{{x}_{2}}$+$\frac{1}{{2}^{{x}_{2}}}$=(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)(1+$\frac{1}{{2}^{{x}_{1}+{x}_{2}}}$),
∵y=2x是增函數(shù),∴${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,又1+$\frac{1}{{2}^{{x}_{1}+{x}_{2}}}$>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),函數(shù)f(x)是增函數(shù).
點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解,以及函數(shù)單調(diào)性和奇偶性的判斷,利用函數(shù)奇偶性和單調(diào)性的定義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (4,4) | B. | (2,4) | C. | (-2,4) | D. | (-4,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{6}{5}$ | B. | $\frac{6}{5}$ | C. | $\frac{9}{10}$ | D. | -$\frac{9}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 1+$\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x≤N | B. | x<N | C. | x>N | D. | x≥N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,$\frac{1}{5}$] | B. | [-$\frac{1}{5}$,1] | C. | (-$\frac{1}{5}$,$\frac{1}{3}$] | D. | ($\frac{1}{3}$,1] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com