【題目】甲、乙兩人同時參加一個外貿公司的招聘,招聘分筆試與面試兩部分,先筆試后面試.甲筆試與面試通過的概率分別為0.8,0.5,乙筆試與面試通過的概率分別為0.8,0.4,且筆試通過了才能進入面試,面試通過則直接招聘錄用,兩人筆試與面試相互獨立互不影響.
(1)求這兩人至少有一人通過筆試的概率;
(2)求這兩人筆試都通過卻都未被錄用的概率;
(3)記這兩人中最終被錄用的人數(shù)為X,求X的分布列和數(shù)學期望.
【答案】(1)0.96;(2)0.192;(3)分布列見解析,數(shù)學期望0.72
【解析】
(1)利用獨立事件與對立事件的概率公式求解即可;(2)直接利用獨立事件的概率公式求解即可;(3)X可取0,1,2, 利用獨立事件與對立事件的概率公式求出各隨機變量對應的概率,從而可得分布列,進而利用期望公式可得的數(shù)學期望.
(1)設“這兩人至少有一人通過筆試”為事件A,
則P(A)=1P()=1 (10.8)2=0.96.
(2)設“這兩人筆試都通過卻都未被錄用”為事件B,
則P(B)=0.82×(10.5)×(10.4)=0.192.
(3)甲、乙兩人被錄用的概率分別為0.8×0.5=0.4,0.8×0.4=0.32.
由題意可得X可取0,1,2,則
P(X=0)=(10.4)×(10.32)=0.408,
P(X=1)=(10.4)×0.32+0.4×(10.32)=0.464,
P(X=2)=0.4×0.32=0.128,
所以X的分布列為
X | 0 | 1 | 2 |
P | 0.408 | 0.464 | 0.128 |
故E(X)=0×0.408+1×0.464+2×0.128=0.72.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有10名教師,其中男教師6名,女教師4名.
(1)現(xiàn)要從中選2名去參加會議,有多少種不同的選法?
(2)選出2名男教師或2名女教師去外地學習的選法有多少種?
(3)現(xiàn)要從中選出男、女老師各2名去參加會議,有多少種不同的選法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左右焦點分別為,,實軸長為6,漸近線方程為,動點在雙曲線左支上,點為圓上一點,則的最小值為
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點,直線與平面所成角的正弦值為,點在上移動.
(Ⅰ)證明:無論點在上如何移動,都有平面平面;
(Ⅱ)求點恰為的中點時,二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個口袋里裝有大小相同的5個小球,其中紅色兩個,其余3個顏色各不相同現(xiàn)從中任意取出3個小球,其中恰有2個小球顏色相同的概率是______;若變量X為取出的三個小球中紅球的個數(shù),則X的數(shù)學期望______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)足球特色學校的發(fā)展狀況,某調查機構得到如下統(tǒng)計數(shù)據:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學校y(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據上表數(shù)據,計算y與x的相關系數(shù)r,并說明y與x的線性相關性強弱(已知:則認為與線性相關性很強;,則認為與線性相關性一般,,則認為y與x線性相關性較弱)
(2)求y與x的線性回歸方程,并預測該地區(qū)2019年足球特色學校的個數(shù)(精確到個位)
參考公式:
;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點.
(1)求橢圓的方程,并求其離心率;
(2)過點作軸的垂線,設點為第四象限內一點且在橢圓上(點不在直線上),點關于的對稱點為,直線與交于另一點.設為原點,判斷直線與直線的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com