【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù),0≤α<π),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,并取相同的長(zhǎng)度單位,建立極坐標(biāo)系.曲線C1:p=1.
(1)若直線l與曲線C1相交于點(diǎn)A,B,點(diǎn)M(1,1),證明:|MA||MB|為定值;
(2)將曲線C1上的任意點(diǎn)(x,y)作伸縮變換 后,得到曲線C2上的點(diǎn)(x',y'),求曲線C2的內(nèi)接矩形ABCD周長(zhǎng)的最大值.

【答案】
(1)證明:∵曲線C1:p=1,∴曲線C1:x2+y2=1.

聯(lián)立 ,得t2+2t(cosα+sinα)+1=0,

∴|MA||MB|=|t1t2|=1.


(2)解:將曲線C1上的任意點(diǎn)(x,y)作伸縮變換 ,

伸縮變換后得C2

其參數(shù)方程為:

不妨設(shè)點(diǎn)A(m,n)在第一象限,

由對(duì)稱(chēng)性知:周長(zhǎng)為 = ,( 時(shí)取等號(hào)),

∴曲線C2的內(nèi)接矩形ABCD周長(zhǎng)的最大值為8.


【解析】(1)求出曲線C1:x2+y2=1.直線l的參數(shù)方程代入,得t2+2t(cosα+sinα)+1=0,由此能證明|MA||MB|為定值.(2)將曲線C1上的任意點(diǎn)(x,y)伸縮變換后得C2 .由此能求出曲線C2的內(nèi)接矩形ABCD周長(zhǎng)的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線 與圓x2+y2=1相交于A、B兩點(diǎn)(其中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最小值為(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2 cos( ﹣θ)
(1)求曲線C的直角坐標(biāo)方程;
(2)已知直線l過(guò)點(diǎn)P(1,0)且與曲線C交于A,B兩點(diǎn),若|PA|+|PB|= ,求直線l的傾斜角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且ctanC= (acosB+bcosA).
(1)求角C;
(2)若c=2 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于集合 ,定義了一種運(yùn)算“ ”,使得集合 中的元素間滿足條件:如果存在元素 ,使得對(duì)任意 ,都有 ,則稱(chēng)元素 是集合 對(duì)運(yùn)算“ ”的單位元素.例如: ,運(yùn)算“ ”為普通乘法;存在 ,使得對(duì)任意 ,都有 ,所以元素 是集合 對(duì)普通乘法的單位元素.
下面給出三個(gè)集合及相應(yīng)的運(yùn)算“ ”:
,運(yùn)算“ ”為普通減法;
表示 階矩陣, },運(yùn)算“ ”為矩陣加法;
(其中 是任意非空集合),運(yùn)算“ ”為求兩個(gè)集合的交集.
其中對(duì)運(yùn)算“ ”有單位元素的集合序號(hào)為( )
A.①②;
B.①③;
C.①②③;
D.②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)中文系共有本科生5000人,其中一、二、三、四年級(jí)的學(xué)生比為5:4:3:1,要用分層抽樣的方法從該系所有本科生中抽取一個(gè)容量為260的樣本,則應(yīng)抽二年級(jí)的學(xué)生(
A.100人
B.60人
C.80人
D.20人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足an+1+(﹣1)nan=3n﹣1,則{an}的前60項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+1滿足f(﹣1)=0,且x∈R時(shí),f(x)的值域?yàn)閇0,+∞).
(1)求f(x)的表達(dá)式;
(2)設(shè)函數(shù)g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]時(shí)是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.

查看答案和解析>>

同步練習(xí)冊(cè)答案