用輾轉(zhuǎn)相除法求出1989和1547的最大公約數(shù)是
 
考點(diǎn):輾轉(zhuǎn)相除法
專(zhuān)題:算法和程序框圖
分析:用較大的數(shù)字除以較小的數(shù)字,得到商和余數(shù),然后再用上一式中的除數(shù)和得到的余數(shù)中較大的除以較小的,以此類(lèi)推,當(dāng)整除時(shí),就得到要求的最大公約數(shù).
解答: 解:用輾轉(zhuǎn)相除法求5280和12155的最大公約數(shù),
∵1989=1×1547+442,
1547=3×442+221,
442=2×221
1989和1547的最大公約數(shù)為221.
故答案為:221
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是輾轉(zhuǎn)相除法,其中熟練掌握輾轉(zhuǎn)相除法和更相減損術(shù)求兩個(gè)正整數(shù)最大公約數(shù)的步驟是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(-2,3)作圓x2+y2+4x+4y-1=0的一條切線(xiàn),切點(diǎn)為M,則切線(xiàn)|PM|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:a∈{a|2a+1>5},命題q:a∈{a|a2-2a-3≤0},若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且acosC-
1
2
c=b.
(Ⅰ)求角A的大;
(Ⅱ)若|
AB
+
AC
|=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,y>0,z>0,x-y+2z=0則
xz
y2
的(  )
A、最小值為8
B、最大值為8
C、最小值為
1
8
D、最大值為
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
3
sin2x+cos2x+
1
2
(x∈R).
(Ⅰ)求函數(shù)y的最大值及y取最大值時(shí)x的集合;
(Ⅱ)求函數(shù)y的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

角α終邊上一點(diǎn)P的坐標(biāo)為(1-t,t),其中t∈[-1,1)∪(1,2],那么tanα的取值范圍為( 。
A、(-∞,-2]∪[-
1
2
,+∞)
B、[-2,-
1
2
]
C、[-2,0)∪(0,-
1
2
]
D、[-2,-1)∪(-1,-
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+(1-a)x+1.
(1)若y=xf(x)為奇函數(shù),求a的值;
(2)若a≤0,求y=f(x)在區(qū)間[4,6]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為第三象限角,且有tanα=2,則cosα-sinα=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案