【題目】已知函數(shù).

1)求函數(shù)處的切線方程;

2)若不等式對(duì)任意的都成立,求實(shí)數(shù)m的取值范圍.

【答案】(1);(2.

【解析】

(1)先利用導(dǎo)數(shù)求切線的斜率,再求切線方程;

(2) 根據(jù)題意可得對(duì)任意的都成立,

當(dāng)時(shí),顯然成立;當(dāng)時(shí),設(shè), 問題即轉(zhuǎn)化為恒成立,只需要即可,因?yàn)?/span> (當(dāng)且僅當(dāng)時(shí)取等號(hào)),即滿足即有對(duì)恒成立,構(gòu)造,通過求導(dǎo)判斷函數(shù)的單調(diào)性求最小值,即可求得的取值范圍.

1)設(shè),則,

當(dāng)時(shí),,,

∴函數(shù)處的切線方程為,即.

2)根據(jù)題意可得對(duì)任意的都成立,

當(dāng)時(shí),不等式即為,顯然成立;

當(dāng)時(shí),設(shè),則不等式恒成立,

即為不等式恒成立,

(當(dāng)且僅當(dāng)時(shí)取等號(hào))

∴由題意可得,即有對(duì)恒成立,

,則,

,即有

,則,

當(dāng)時(shí),,上單調(diào)遞增,

有且僅有一個(gè)根,

當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,

∴當(dāng)時(shí),取得最小值,為,∴

∴實(shí)數(shù)的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次考試,班主任從全班同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本,他們的數(shù)學(xué)物理分?jǐn)?shù)對(duì)應(yīng)如下表:

學(xué)生編號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)分?jǐn)?shù)

60

65

70

75

80

85

90

95

物理分?jǐn)?shù)

72

77

80

84

88

90

93

95

繪出散點(diǎn)圖如下:

根據(jù)以上信息,判斷下列結(jié)論:

①根據(jù)此散點(diǎn)圖,可以判斷數(shù)學(xué)成績與物理成績具有線性相關(guān)關(guān)系;

②根據(jù)此散點(diǎn)圖,可以判斷數(shù)學(xué)成績與物理成績具有一次函數(shù)關(guān)系;

③甲同學(xué)數(shù)學(xué)考了80分,那么,他的物理成績一定比數(shù)學(xué)只考了60分的乙同學(xué)的物理成績要高.

其中正確的個(gè)數(shù)為( .

A.0B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD是直角梯形,∠DAB90°ADBC,AD⊥側(cè)面PAB,△PAB是等邊三角形,DAAB2,BC,E是線段AB的中點(diǎn).

1)求證:PECD

2)求PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人民生活水平的提高,對(duì)城市空氣質(zhì)量的關(guān)注度也逐步增大,圖2是某城市1月至8月的空氣質(zhì)量檢測(cè)情況,圖中一、二、三、四級(jí)是空氣質(zhì)量等級(jí), 一級(jí)空氣質(zhì)量最好,一級(jí)和二級(jí)都是質(zhì)量合格天氣,下面四種說法正確的是( )

①1月至8月空氣合格天數(shù)超過20天的月份有5個(gè)

②第二季度與第一季度相比,空氣達(dá)標(biāo)天數(shù)的比重下降了

③8月是空氣質(zhì)量最好的一個(gè)月

④6月份的空氣質(zhì)量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立坐標(biāo)系,兩個(gè)坐標(biāo)系取相同的單位長度.已知直線的參數(shù)方程為,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程

(2)設(shè)直線與曲線相交于兩點(diǎn),時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,為正三角形.,且與底面所成角的正切值為.

1)證明:平面平面;

2是線段上一點(diǎn),記,是否存在實(shí)數(shù),使二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn),若函數(shù)滿足:,都有,就稱這個(gè)函數(shù)是點(diǎn)A限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點(diǎn)O限定函數(shù)的序號(hào)是______.已知點(diǎn)在函數(shù)的圖象上,若函數(shù)是點(diǎn)A限定函數(shù),則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)

經(jīng)常網(wǎng)購

偶爾或不用網(wǎng)購

合計(jì)

男性

50

100

女性

70

100

合計(jì)

(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?

(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;

②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.

參考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】變量、滿足約束條件,若目標(biāo)函數(shù)(其中)僅在處取得最大值,則的取值范圍為__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案