在△ABC中,b=3,c=3
3
,∠B=30°,求角A,角C,a.
考點:三角形中的幾何計算
專題:解三角形
分析:先根據(jù)正弦定理以及等式求得C,進(jìn)而根據(jù)三角形內(nèi)角和求得A,最后在解三角形中求a.
解答: 解:由正弦定理知
b
sinB
=
c
sinC
,
∴sinC=
c
b
•sinB=
3
3
3
×
1
2
=
3
2
,
∵0<C<π
∴C=
π
3
3

①當(dāng)C=
π
3
時,A=
π
2

a=
b2+c2
=
21
,
②當(dāng)C=
3
時,A=π-
3
-
π
6
=
π
6
,
即A=B,
∴a=b=3.
點評:本題主要考查了解三角形問題.解題過程中注意C有兩個解,要分開討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=2cos228°-1,b=
2
2
(cos18°-sin18°),c=log
1
2
2
2
,則( 。
A、a<b<c
B、b<a<c
C、b<c<a
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知30<x<42,15<y<24,分別求x+y、x-3y及
x
x-3y
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)Z=
4+3i
1+2i
(i為虛數(shù)單位),求Z及|Z|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx.(a為常數(shù))
(1)當(dāng)a=0時,①求f(x)的單調(diào)增區(qū)間;②試比較f(m)與f(
1
m
)的大;
(2)g(x)=ex-x+1,若對任意給定的x0∈(0,1],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2ax-
3
2
x2-3lnx,其中a∈R,為常數(shù)
(1)若f(x)在x∈[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若h(x)的單調(diào)減區(qū)間是(
1
2
,1),求實數(shù)a的值;
(2)若f(x)≥g(x)對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(3)設(shè)h(x)有兩個極值點x1,x2,且x1∈(0,
1
2
).若h(x1)-h(x2)>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=3,a4=7.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
3
=1(a>
10
)的右焦點F在圓D:(x-2)2+y2=1上,直線l:x=my+3(m≠0)交橢圓于M,N兩點.
(1)求橢圓C的方程;
(2)若OM⊥ON(O為坐標(biāo)原點),求m的值.

查看答案和解析>>

同步練習(xí)冊答案