精英家教網 > 高中數學 > 題目詳情
選修4-2:矩陣與變換已知矩陣M=
10
0-1
,N=
12
34

①求二階矩陣X,使MX=N;
②求矩陣X的特征值以及其中一個特征值相應的一個特征向量.
分析:①先設出所求矩陣,根據點的列向量在矩陣的作用下變?yōu)榱硪涣邢蛄,建立一個四元一次方程組,解方程組即可.
②先根據特征值的定義列出特征多項式,令f(λ)=0解方程可得特征值,再由特征值列出方程組即可解得相應的特征向量.
解答:解:①設 X=
xy
zw
,
按題意有
10
01
xy
zw
=
12
34
,(2分)
根據矩陣乘法法則有
2x-z=4
2y-w=-1
-4x+3z=-3
-4y+3w=1
(6分)
解之得
x=1
y=2
z=-3
w=-4

X=
12
-3-4
.(10分)
②矩陣M的特征多項式為 f(λ)=
.
λ-1     2
 -3    λ+4
.
=λ2+3λ+2
,(2分)
令f(λ)=0,解得λ1=-1,λ2=-2,(4分)
將λ1=1代入二元一次方程組
(λ-1)•x+2•y=0
-3x+(λ+4)y=0

解得x=-y,(6分)
所以矩陣X屬于特征值1的一個特征向量為
1
-1
;(8分)
同理,矩陣X屬于特征值2的一個特征向量為
2
-3
(10分).
點評:本題主要考查了二階矩陣的求解,以及待定系數法的應用等有關知識,本題主要考查來了矩陣特征值與特征向量的計算等基礎知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標系與參數方程
已知曲線C1的參數方程為
x=2sinθ
y=cosθ
為參數),C2的參數方程為
x=2t
y=t+1
(t
為參數)
(I)若將曲線C1與C2上所有點的橫坐標都縮短為原來的一半(縱坐標不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,求過極點且與C′2垂直的直線的極坐標方程.
(3)選修4-5:不等式選講
設函數f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域為R,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標系與參數方程
已知極點與原點重合,極軸與x軸的正半軸重合.若曲線C1的極坐標方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數方程為:
x=1-
3
t
y=t
(t為參數).
(Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)直線?上有一定點P(1,0),曲線C1與?交于M,N兩點,求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實數,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三第八次月考理科數學試卷 題型:解答題

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分

(1)(本小題滿分7分)選修4-2:矩陣與變換

變換是將平面上每個點的橫坐標乘,縱坐標乘,變到點.

(Ⅰ)求變換的矩陣;

(Ⅱ)圓在變換的作用下變成了什么圖形?

(2)(本小題滿分7分)選修4-4:坐標系與參數方程

已知極點與原點重合,極軸與x軸的正半軸重合.若曲線的極坐標方程為:,直線的參數方程為:為參數).

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)直線上有一定點,曲線交于M,N兩點,求的值.

(3)(本小題滿分7分)選修4-5:不等式選講

 已知為實數,且

(Ⅰ)求證:

(Ⅱ)求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省福州三中高三(上)期中數學試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應的特征向量分別為
(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標系與參數方程
已知曲線C1的參數方程為為參數),C2的參數方程為為參數)
(I)若將曲線C1與C2上所有點的橫坐標都縮短為原來的一半(縱坐標不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,求過極點且與C′2垂直的直線的極坐標方程.
(3)選修4-5:不等式選講
設函數f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關于x的不等式f(x)≤5的解集;
(II)若的定義域為R,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:福建省龍巖一中2011-2012學年高三下學期第八次月考試卷數學(理) 題型:解答題

 本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分

(1)選修4-2:矩陣與變換

變換是將平面上每個點的橫坐標乘,縱坐標乘,變到點.

(Ⅰ)求變換的矩陣;

(Ⅱ)圓在變換的作用下變成了什么圖形?

(2)選修4-4:坐標系與參數方程

已知極點與原點重合,極軸與x軸的正半軸重合.若曲線的極坐標方程為:,直線的參數方程為:為參數).

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)直線上有一定點,曲線交于M,N兩點,求的值.

(3)選修4-5:不等式選講

 已知為實數,且

(Ⅰ)求證:

(Ⅱ)求實數m的取值范圍.

 

 

 

查看答案和解析>>

同步練習冊答案