設f(x)是定義在[-1,1]上的奇函數(shù),g(x)的圖象與f(x)的圖象關(guān)于直線x=1對稱,而當x∈[2,3]時,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)對任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)對任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|≤1.
分析:(I)根據(jù)g(x)的圖象與f(x)的圖象關(guān)于直線x=1對稱,則f(x+1)=g(1-x)即f(x)=g(2-x),從而可求出-1≤x≤0時函數(shù)f(x)的解析式,最后根據(jù)奇偶性求出函數(shù)在0<x≤1上的解析式;
(II)當x1,x2∈[0,1]且x1≠x2時,0<x1+x2<2,代入解析式進行化簡變形,即可證得結(jié)論;
(III)當x1,x2∈[0,1]且x1≠x2時,0≤x12≤1,0≤x22≤1∴-1≤x22-x12≤1即|x22-x12|≤1,即可證得結(jié)論.
解答:解:(Ⅰ)由題意知f(x+1)=g(1-x)?f(x)=g(2-x)
當-1≤x≤0時,2≤2-x≤3,f(x)=-(2-x)
2+4(2-x)-4=-x
2當0<x≤1時,-1≤-x<0∴f(-x)=-x
2,
由于f(x)是奇函數(shù)∴f(x)=x
2∴
f(x)=(Ⅱ)當x
1,x
2∈[0,1]且x
1≠x
2時,0<x
1+x
2<2,
∴|f(x
2)-f(x
1)|=|x
22-x
12|=|(x
2-x
1)(x
2+x
1)|<2|x
2-x
1|
(Ⅲ)當x
1,x
2∈[0,1]且x
1≠x
2時,0≤x
12≤1,0≤x
22≤1,
∴-1≤x
22-x
12≤1即|x
22-x
12|≤1.∴|f(x
2)-f(x
1)|=|x
22-x
12|≤1.
點評:本題主要考查了函數(shù)的奇偶性,以及函數(shù)的解析式的求解和不等式的證明,同時考查了化簡轉(zhuǎn)化能力,屬于中檔題.