已知橢圓的離心率為,且過點,為其右焦點.
(1)求橢圓的方程;
(2)設(shè)過點的直線與橢圓相交于、兩點(點在兩點之間),若與的面積相等,試求直線的方程.
(1);(2)。
【解析】
試題分析:(1)因為,所以,.
設(shè)橢圓方程為,又點在橢圓上,所以,
解得,
所以橢圓方程為.
(2)易知直線的斜率存在,
設(shè)的方程為, 由消去整理,得
,
由題意知,
解得.
設(shè),,則, ①,. ②.
因為與的面積相等,
所以,所以. ③ 由①③消去得. ④
將代入②得. ⑤
將④代入⑤,
整理化簡得,解得,經(jīng)檢驗成立.
所以直線的方程為.
考點:橢圓的標準方程;橢圓的簡單性質(zhì);直線與橢圓的綜合應(yīng)用。
點評:本題考查了橢圓方程的求法,以及直線與橢圓的綜合應(yīng)用,為圓錐曲線的常規(guī)題,應(yīng)當掌握?疾榱藢W生綜合分析問題、解決問題的能力,知識的遷移能力以及運算能力。解題時要認真審題,仔細分析。
科目:高中數(shù)學 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com