給定函數(shù)①y=x -
1
2
,②y=2 x2-3x+3,③y=log 
1
2
|1-x|,④y=sin
πx
2
,其中在(0,1)上單調遞減的個數(shù)為(  )
分析:函數(shù)①為冪函數(shù),且冪指數(shù)小于0,有冪函數(shù)的性質可判其在(0,1)上的單調性;
函數(shù)②是指數(shù)型的復合函數(shù),內層是二次函數(shù),外層是指數(shù)函數(shù),由復合函數(shù)的單調性可判它在(0,1)上的單調性;
函數(shù)③是對數(shù)型的復合函數(shù),外層對數(shù)函數(shù)是減函數(shù),只要借助于圖象分析內層函數(shù)t=|1-x|在(0,1)上的單調性即可;
函數(shù)④是正弦類型的函數(shù),求出周期后借助于正弦函數(shù)的單調性可判斷它在(0,1)上的單調性.
解答:解:①為冪函數(shù),因為-
1
2
<0
,所以y=x-
1
2
在(0,1)上遞減.
②令t=x2-3x+3=(x-
3
2
)2+
3
4
,該二次函數(shù)在(0,1)上遞減,而外層函數(shù)y=2t為增函數(shù),所以函數(shù)y=2x2-3x+3在(0,1)上遞減.
y=log
1
2
|1-x|=log
1
2
|x-1|
,令t=|x-1|,該內層函數(shù)在(0,1)遞減,而外層函數(shù)y=log
1
2
t
在定義域內為減函數(shù),所以復合函數(shù)y=log 
1
2
|1-x|為(0,1)上的增函數(shù).
y=sin
π
2
x
的周期T=4,由正弦函數(shù)的單調性知,y=sin
π
2
x
在(0,1)上單調遞增.
所以滿足條件的有2個.
故選C.
點評:本題考查了基本初等函數(shù)單調性的判斷,考查了復合函數(shù)的單調性,復合函數(shù)的單調性符合“同增異減”的原則,此題是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給定函數(shù)①y=
x
,②y=log2(x+1),③y=|x-1|,④y=(
1
2
)x-1
,其中在區(qū)間(0,1)上單調遞減的函數(shù)序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定函數(shù)①y=x-1,②y=1og
12
(x+1)
,③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調遞減的函數(shù)序號為
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給定函數(shù)①y=x -
1
2
,②y=2 x2-3x+3,③y=log 
1
2
|1-x|,④y=sin
πx
2
,其中在(0,1)上單調遞減的個數(shù)為( 。
A.0B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年天津市新華中學高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

給定函數(shù)①y=x,②y=2,③y=log|1-x|,④y=sin,其中在(0,1)上單調遞減的個數(shù)為( )
A.0
B.1個
C.2個
D.3個

查看答案和解析>>

同步練習冊答案