已知函數(shù)f(x)=alnx-ax-3(a∈R)
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象在點(diǎn)(2,f)處切線的傾斜角為45°,且對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f(x)+
m2
)
在區(qū)間(t,3)上總不為單調(diào)函數(shù),求m的取值范圍.
分析:(1)先求導(dǎo)數(shù)fˊ(x)然后在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區(qū)間為單調(diào)增區(qū)間,fˊ(x)<0的區(qū)間為單調(diào)減區(qū)間.
(2)對(duì)函數(shù)求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的單調(diào)區(qū)間得到若f(x)在[1,2]上不單調(diào),只要極值點(diǎn)出現(xiàn)在這個(gè)區(qū)間就可以,得到對(duì)于任意的t∈[1,2],g′(t)<0恒成立,從而求m的取值范圍.
解答:解:(1)f/(x)=
a(1-x)
x
(x>0)
,
a>0時(shí),f(x)在(0,1]上單調(diào)遞增,在[1,+∞)單調(diào)遞減;
a<0時(shí),f(x)在(0,1]上單調(diào)遞減,在[1,+∞)單調(diào)遞增;
a=0時(shí),f(x)不是單調(diào)函數(shù).
(2)由f′(2)=1得a=-2,所以f(x)=-2lnx+2x-3,則g(x)=x3+(
m
2
+2)x2-2x

故g′(x)=3x2+(m+4)x-2
因?yàn)間(x)在(t,3)上總不是單調(diào)函數(shù),且g′(0)=-2,
g(t)<0
g(3)>0

由題意知:對(duì)于任意的t∈[1,2],g′(t)<0恒成立,
綜上,
g(1)<0
g(2)<0
g(3)>0
?-
37
3
<m<-9

m的取值范圍為:-
37
3
<m<-9
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的步驟是:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù)fˊ(x);(3)在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0;(4)確定函數(shù)的單調(diào)區(qū)間.若在函數(shù)式中含字母系數(shù),往往要分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案