精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系xOy中,點P到兩點(0,-
3
),(0,
3
)的距離之和等于4,設點P的軌跡為C.
(1)寫出C的方程;
(2)設直線y=kx+1與C交于A,B兩點.k為何值時以AB為直徑的圓經過原點O?此時|AB|的值是多少?
(1)由條件知:P點的軌跡為焦點在y軸上的橢圓,其中c=
3
,a=2,
∴b2=a2-c2=1.
故軌跡C的方程為:x2+
y2
4
=1
;
(2)設A(x1,y1),B(x2,y2
y=kx+1
x2+
y2
4
=1
,消去y,
可得(kx+1)2+4x2=4,即(k2+4)x2+2kx-3=0
△=16k2+48>0,x1+x2=-
2k
k2+4
,x1x2=-
3
k2+4
,
∵以AB為直徑的圓經過原點O,
OA
OB

∴x1x2+y1y2=0,
∴(k2+1)x1x2+k(x1+x2)+1=0,
∴(k2+1)(-
3
k2+4
)+k•(-
2k
k2+4
)+1=0,
∴k=±
1
2

∴k=±
1
2
時,以AB為直徑的圓經過原點O,
|AB|=
1+
1
4
(x1+x2)2-4x1x2
=
4
65
17
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知mn≠0,則方程mx2+ny2=1與mx+ny2=0在同一坐標系下的圖形可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,三條直線a、b、c兩兩平行,直線a、b間的距離為p,直線b、c間的距離為
p
2
,A、B為直線a上的兩個定點,且AB=2p,MN是在直線b上滑動的長度為2p的線段.
(1)建立適當的平面直角坐標系,求△AMN的外心C的軌跡E;
(2)當△AMN的外心C在E上什么位置時,使d+BC最小?最小值是多少?(其中,d為外心C到直線c的距離)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設P的軌跡是曲線C,滿足:點P到F(-2,0)的距離與它到直線l:x=-4的距離之比是常數,又點M(2,-
2
)
在曲線C上,點N(-1,1)在曲線C的內部.
(1)求曲線C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此時點P的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

點P與定點F(1,0)的距離和它到定直線x=5的距離比是
1
5
,則點P的軌跡方程為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1的棱長為1,點M在AB上,且AM=
1
3
,點P是平面ABCD上的動點,且動點P到直線A1D1的距離與動點P到點M的距離的平方差為1,則動點的軌跡是(  )
A.圓B.拋物線C.雙曲線D.直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定點O(0,0),A(3,0),動點P到定點O距離與到定點A的距離的比值是
1
2

(1)記動點P的軌跡為曲線D.求曲線D的方程,并說明方程表示的曲線;
(2)若M是圓E:(x-2)2+(y-4)2=64上任意一點,過M作曲線D的切線,切點是N,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

與y軸相切且和半圓x2+y2=4(0≤x≤2)內切的動圓圓心的軌跡方程是( 。
A.y2=4(x+1)(0<x≤1)B.y2=4(x-1)(0<x≤1)
C.y2=-4(x-1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知P是曲線y=2x2-1上的動點,定點A(0,-1),且點P不同于點A,若M點滿足
PM
=2
MA
,求點M的軌跡方程.

查看答案和解析>>

同步練習冊答案