已知
a
=(1,5,-2)
,
b
=(m,2,m+2)
,若
a
b
,則m的值為
 
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專題:空間向量及應(yīng)用
分析:根據(jù)向量垂直于向量數(shù)量積之間的關(guān)系解方程即可.
解答: 解:∵
a
b
,
a
b
=0
,
即(1,5,-2)•(m,2,m+2)=0,
∴m+10-2m-4=0,
解得m=6.
故答案為:6.
點(diǎn)評:本題主要考查空間向量數(shù)量積的應(yīng)用,利用向量垂直轉(zhuǎn)化為向量數(shù)量積等于0是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示(單位:cm),則其體積和表面積分別是(  )
A、6πcm3和12(1+π)cm2
B、6πcm3和12πcm2
C、12πcm3和12(1+π)cm2
D、12πcm3和12πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-
y2
3
=1.
(1)若橢圓C與該雙曲線共焦點(diǎn),且有一交點(diǎn)p(2,3),求橢圓C方程;
(2)設(shè)(1)中橢圓C的左、右頂點(diǎn)分別為A,B,右焦點(diǎn)為F,直線l為橢圓C的右準(zhǔn)線,N為l上的一動(dòng)點(diǎn),且在x軸上方,直線AN與橢圓交于點(diǎn)M.
①若AM=MN,求∠AMB的余弦值;
②設(shè)過A,F(xiàn),N三點(diǎn)的圓與y軸交于P、Q兩點(diǎn),當(dāng)線段PQ的中點(diǎn)為(0,9)時(shí),求這個(gè)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若鈍角三角形三內(nèi)角的度數(shù)依次成等差數(shù)列,且最小邊長與最大邊長的比值為m,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={x,1},Q={y,1,2},x,y∈{1,2,3,4,5,6,7},且P⊆Q,在直角坐標(biāo)平面內(nèi),從所有滿足這些條件的有序?qū)崝?shù)對(x,y)所表示的點(diǎn)中任取一個(gè),若該點(diǎn)落在圓x2+y2=R2(R2∈Z)內(nèi)的概率為
2
5
,則滿足要求的R2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從{1,2,3,4,5}中隨機(jī)選取一個(gè)數(shù)a,從{1,2,3}中隨機(jī)選取一個(gè)數(shù)b,則關(guān)于x的方程x2+2ax+b2=0有兩個(gè)虛根的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A、y=-ln|x|
B、y=x3
C、y=2|x|
D、y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在上、下底面對應(yīng)邊之比為1:2的正三棱臺(tái)中,過上底面一邊A1B1作一個(gè)平行于棱的平面A1B1 EF,求這個(gè)平面分三棱臺(tái)所成的兩部分體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x0是函數(shù)f(x)=3x+3x-8的一個(gè)零點(diǎn),且x0∈(k,k+1),k∈Z,則k=
 

查看答案和解析>>

同步練習(xí)冊答案