已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.求:
(I)實數(shù)a的值;  
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.
分析:(Ⅰ)先求導f′(x),再由x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點即f′(3)=0建立方程,解之即可;
(Ⅱ)由(Ⅰ)確定函數(shù)f(x)的解析式,再由f′(x)>0和f′(x)<0求得單調(diào)區(qū)間.
解答:解:(Ⅰ)因為f′(x)=
a
x+1
+2x-10
所以f′(3)=
a
4
+6-10=0
因此a=16
(Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞)
∴f′(x)=
2(x2-4x+3)
x+1

當x∈(-1,1)∪(3,+∞)時,f′(x)>0
當x∈(1,3)時,f′(x)<0
所以f(x)的單調(diào)增區(qū)間是(-1,1),(3,+∞);f(x)的單調(diào)減區(qū)間是(1,3)
點評:本題主要考查利用求導研究函數(shù)的單調(diào)性,解題的關鍵是弄清函數(shù)在某點取得極值的條件,同時考查了運算求解的能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.
(Ⅰ)求a;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若直線y=b與函數(shù)y=f(x)的圖象有3個交點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=3是函數(shù)f(x)=(x2+ax+b)e3-x,(x∈R)的一個極值點.
(Ⅰ)求a與b的關系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(Ⅱ)當a>0時,求f(x)在[0,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=3是函數(shù)f(x)=(x2+ax-2a-3)e3-x的極值點.
(1)求f(x)的單調(diào)區(qū)間(用a表示);
(2)設a>0,g(x)=(a2+8)ex,若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年北京市重點中學高三(上)月考數(shù)學試卷(解析版) 題型:解答題

已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.求:
(I)實數(shù)a的值;  
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案