已知實數(shù)a>0,函數(shù)f(x)=ax(x-2)2(x∈R)有極大值32.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)的單調區(qū)間.
分析:(1)先將函數(shù)f(x)展開,然后對函數(shù)f(x)進行求導,令導函數(shù)等于0求x的值,再由函數(shù)的單調性進行驗證從而最終確定答案.
(2)根據(jù)導函數(shù)大于0時原函數(shù)單調遞增,導函數(shù)小于0時原函數(shù)單調遞減可求單調區(qū)間.
解答:解:(1)∵f(x)=ax(x-2)
2=ax
3-4ax
2+4ax,
∴f′(x)=3ax
2-8ax+4a.
由f′(x)=0,得3ax
2-8ax+4a=0.
∵a≠0,∴3x
2-8x+4=0.
解得x=2或x=
.
∵a>0,∴x<
或x>2時,f′(x)>0;
<x<2時,f′(x)<0.
∴當x=
時,f(x)有極大值32,即
a-
a+a=32,∴a=27.
(2)∵x<
或x>2時,f′(x)>0,∴函數(shù)f(x)單調遞增
當
<x<2時,f′(x)<0,∴函數(shù)f(x)單調遞減
f(x)在(-∞,
)和(2,+∞)上是增函數(shù),在(
,2)上是減函數(shù).
點評:本題主要考查函數(shù)的極值、單調性與其導函數(shù)之間的關系.屬基礎題.