(2011•東城區(qū)二模)如圖,BC是半徑為2的圓O的直徑,點P在BC的延長線上,PA是圓O的切線,點A在直徑BC上的射影是OC的中點,則∠ABP=
30°
30°
;PB•PC=
12
12
分析:先根據(jù)點A在直徑BC上的射影是OC的中點得∠AOP=60°;再結合OA=OB求出∠ABP;最后在Rt△AOP求出PA,結合切割線定理即可求出PB.PC.
解答:解:由條件點A在直徑BC上的射影E是OC的中點易得OE=
1
2
OA;
∴∠AOP=60°;
又由OA=OB⇒∠ABP=30°.
在Rt△AOP中,因為OA=2,∠AOP=60°可得AP=2
3
,
由切割線定理可得PB•PC=AP2=12.
故答案為:30°,12.
點評:本題主要考查與圓有關的比例線段、相似三角形的判定及切線性質(zhì)的應用.屬于基礎題.解決這類題目的關鍵在于對性質(zhì)的熟練掌握以及靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•東城區(qū)二模)給出下列三個命題:
①?x∈R,x2>0;
②?x0∈R,使得x02≤x0成立;
③對于集合M,N,若x∈M∩N,則x∈M且x∈N.
其中真命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•東城區(qū)二模)已知正項數(shù)列{an}中,a1=1,a2=2,2an2=an+12+an-12(n≥2),則a6等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•東城區(qū)二模)已知雙曲線
x2
a2
-
y2
b2
=1 (a>0,b>0)
,過其右焦點且垂直于實軸的直線與雙曲線交于M,N兩點,O為坐標原點.若OM⊥ON,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•東城區(qū)二模)某地為了調(diào)查職業(yè)滿意度,決定用分層抽樣的方法從公務員、教師、自由職業(yè)者三個群體的相關人員中,抽取若干人組成調(diào)查小組,有關數(shù)據(jù)見下表,則調(diào)查小組的總人數(shù)為
9
9
;若從調(diào)查小組中的公務員和教師中隨機選2人撰寫調(diào)查報告,則其中恰好有1人來自公務員的概率為
3
5
3
5

相關人員數(shù) 抽取人數(shù)
公務員 32 x
教師 48 y
自由職業(yè)者 64 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•東城區(qū)二模)已知點P(2,t)在不等式組
x-y-4≤0
x+y-3≤0
表示的平面區(qū)域內(nèi),則點P(2,t)到直線3x+4y+10=0距離的最大值為
4
4

查看答案和解析>>

同步練習冊答案