17.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|).
(1)求實(shí)數(shù)a,b的值;
(2)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍.

分析 (1)g(x)在區(qū)間[2,4]上是增函數(shù),故$\left\{\begin{array}{l}g(2)=1\\ g(4)=9\end{array}$解得:實(shí)數(shù)a,b的值;
(2)若不等式f(log2k)>f(2)成立,則log2k>2或log2k<-2.解得實(shí)數(shù)k的取值范圍.

解答 (本小題滿分12分)
解:(1)g(x)=a(x-1)2+1+b-a,
因?yàn)閍>0,
所以g(x)在區(qū)間[2,4]上是增函數(shù),
故$\left\{\begin{array}{l}g(2)=1\\ g(4)=9\end{array}$
解得$\left\{\begin{array}{l}a=1\\ b=0.\end{array}$…(6分)
(2)由已知可得f(x)=g(|x|)=x2-2|x|+1為偶函數(shù).
所以不等式 f(log2k)>f(2)可化為   log2k>2或log2k<-2.
解得k>4或0<k<$\frac{1}{4}$.…(12分)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=$\frac{x+1}{x}$,則f(1)等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合A=R,集合B={y|y>0},下列對(duì)應(yīng)關(guān)系中是從集合A到集合B的映射的是( 。
A.x→y=|x|B.x→y=$\frac{1}{{{{({x-1})}^2}}}$C.$x→y={({\frac{1}{2}})^x}$D.$x→y=\sqrt{{{({\frac{1}{2}})}^x}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若點(diǎn)(x,y)在雙曲線$\frac{{x}^{2}}{4}$-y2=1上,則3x2-2xy的最小值是6+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若f(x)是定義R上的奇函數(shù),且當(dāng)x>0時(shí)f(x)=lg(x+1),則x<0時(shí),f(x)=( 。
A.lg(1-x)B.-lg(x+1)C.-lg(1-x)D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.圖1是某小區(qū)100戶居民月用電等級(jí)的條形圖,記月用電量為一級(jí)的用戶為A1,月用電量為二級(jí)的用戶為A2,…,以此類推,用電量為六級(jí)的用戶為A6,圖2是統(tǒng)計(jì)圖1中居民月用電量在一定級(jí)別范圍內(nèi)的用戶數(shù)的一個(gè)算法流程圖.根據(jù)圖1提供的信息,則圖2中輸出的S值為( 。
A.82B.70C.48D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=2x+1,則函數(shù)y=f($\sqrt{{x^2}-2x-3}$)的單調(diào)遞減區(qū)間為( 。
A.(-∞,1)B.(-∞,-1]C.(3,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求證:$\frac{4}{9}$>log52>$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.經(jīng)市場調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬元,每生產(chǎn)x萬件,需另投入流動(dòng)成本為W(x)萬元,在年產(chǎn)量不足8萬件時(shí),W(x)=$\frac{1}{3}$x2+x(萬元),在年產(chǎn)量不小于8萬件時(shí),W(x)=6x+$\frac{100}{x}$-38(萬元).通過市場分析,每件產(chǎn)品售價(jià)為5元時(shí),生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;
(2)寫出當(dāng)產(chǎn)量為多少時(shí)利潤最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案