已知對任意x∈R,不等式
1
2X2+X
(
1
2
)2X2-mx+m+4
恒成立,求實數(shù)m的取值范圍.
分析:化簡不等式,利用指數(shù)函數(shù)的單調(diào)性,轉(zhuǎn)化不等式為二次不等式,通過判別式解決恒成立問題,求出m的范圍.
解答:解:原不等式為(
1
2
)x2+x>(
1
2
)2x2-mx+m+4
,由函數(shù)y=(
1
2
)x
是減函數(shù)…(4分)
得x2+x<2x2-mx+m+4恒成立,…(6分)
即x2-(m+1)x+m+4>0恒成立,…(8分)
∴△=(m+1)2-4(m+4)<0…(10分)
∴-3<m<5…(12分)
點評:本題考查指數(shù)函數(shù)的性質(zhì),恒成立條件的應(yīng)用,二次不等式的解法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x0,使得|f(x0)|≥
14
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x0,使得數(shù)學(xué)公式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省邯鄲一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線,則a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測:函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x,使得成立.

查看答案和解析>>

同步練習(xí)冊答案