已知數(shù)列{an}的前四項(xiàng)為:-
1
1×2
,
1
2×3
,-
1
3×4
,
1
4×5
,則an=
(-1)n
n(n+1)
(-1)n
n(n+1)
分析:由數(shù)列{an}的前四項(xiàng)為觀察出數(shù)列的規(guī)律,即可得到數(shù)列的通項(xiàng)公式.
解答:解:由數(shù)列{an}的前四項(xiàng)為:-
1
1×2
,
1
2×3
,-
1
3×4
,
1
4×5
,
可看到:奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,其符號為(-1)n
另外分母為項(xiàng)數(shù)n與n+1相乘,故an=
(-1)n
n(n+1)

故答案為
(-1)n
n(n+1)
點(diǎn)評:本題考查了通過觀察分析歸納得出數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案