6.若函數(shù)y=ax在區(qū)間[0,2]上的最大值和最小值的和為5,則函數(shù)y=logax在區(qū)間[$\frac{1}{4}$,2]上的最大值和最小值之差是( 。
A.1B.3C.4D.5

分析 先根據(jù)指數(shù)函數(shù)的單調性求出a的值,再根據(jù)對數(shù)函數(shù)的性質即可求出答案.

解答 解:∵函數(shù)y=ax在區(qū)間[0,2]上的最大值和最小值的和為5,
∴1+a2=5,
解得a=2,a=-2(舍去),
∴y=log2x在區(qū)間[$\frac{1}{4}$,2]上為增函數(shù),
∴ymax=log22=1,ymin=log2$\frac{1}{4}$=-2,
∴1-(-2)=3,
故選:B

點評 本題考查了指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知變量x,y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{x+y-4≤0}\\{x≥1}\end{array}\right.$,則z=x-y的取值范圍是( 。
A.[-2,-1]B.[-2,0]C.[0,$\frac{6}{5}$]D.[-2,$\frac{6}{5}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)的定義域為R.?a,b∈R,若此函數(shù)同時滿足:
①當a+b=0時,有f(a)+f(b)=0;
②當a+b>0時,有f(a)+f(b)>0,
則稱函數(shù)f(x)為Ω函數(shù).
在下列函數(shù)中:
①y=x+sinx;
②y=3x-($\frac{1}{3}$)x;
③y=$\left\{\begin{array}{l}{0,x=0}\\{-\frac{1}{x},x≠0}\end{array}\right.$
是Ω函數(shù)的為①②.(填出所有符合要求的函數(shù)序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)y=(m+5)x${\;}^{\frac{1}{m+3}}}$是冪函數(shù),則對函數(shù)的單調區(qū)間描述正確的是( 。
A..單調減區(qū)間為 (-∞,+∞)B.單調減區(qū)間為(0,+∞)
C.單調減區(qū)間為  (-∞,0)∪(0,+∞)D.單調減區(qū)間為(-∞,0)和(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列函數(shù)中,在(0,+∞)上單調遞增的是(  )
A.y=$\frac{1}{x}$B.y=1-x2C.y=($\frac{1}{10}$)xD.y=lgx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{-{x}^{2}+bx+c,x≤0}\end{array}\right.$滿足f(0)=1,且f(0)+2f(-1)=0,那么函數(shù)g(x)=f(x)+x有2個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知三棱錐P-ABC的所有棱長都相等,現(xiàn)沿PA,PB,PC三條側棱剪開,將其表面展開成一個平面圖形,若這個平面圖形外接圓的半徑為$\sqrt{6}$,則三棱錐P-ABC的體積為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上單調遞減的函數(shù)是(  )
A.f(x)=$\frac{1}{|x|}$B.$f(x)={(\frac{1}{3})^x}$C.f(x)=x2+1D.f(x)=lg|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線$\frac{y^2}{9}-\frac{x^2}{16}$=1的實軸長是( 。
A.3B.4C.6D.8

查看答案和解析>>

同步練習冊答案