如圖,正方形ABCD的邊長是a,依次連接正方形ABCD各邊中點得到一個新的正方形,再依次連接新正方形各邊中點又得到一個新的正方形,依此得到一系列的正方形,如圖所示.現(xiàn)有一只小蟲從A點出發(fā),沿正方形的邊逆時針方向爬行,每遇到新正方形的頂點時,沿這個正方形的邊逆時針方向爬行,如此下去,問爬行2n條線段的長度的平方和是多少?
考點:數(shù)列的求和
專題:應(yīng)用題,等差數(shù)列與等比數(shù)列
分析:根據(jù)中位線定理,每一次連接得到的正方形的邊長是上一個正方形對角線的一半,即可得到第一、二、三次連接得到的正方形的邊長,依此類推找出規(guī)律,可得出第n次圍出的正方形的邊長,再由題意和運用等比數(shù)列的前n項和公式即可.
解答: 解:由題意得,每一次連接得到的正方形的邊長是上一個正方形對角線的一半,
根據(jù)中位線定理得:
第一次連接得到的正方形的邊長為
2
2
a,第二次連接得出的正方形的邊長為(
2
2
)2
a=
1
2
a,
第三次次連接得出的正方形的邊長為
2
4
a,…
綜上可得第2n次圍出的正方形邊長為(
2
2
2na.
由題意知,一只小蟲在每個正方形爬行的線段的長度是此正方形的邊長的一半,
所求的2n條線段的長度的平方和是:
s=
1
2
{(
2
2
a)2+[(
2
2
)2
a]2+(
2
4
a)2+…+[(
2
2
2na]2}
=
a2
4
[1+(
2
2
2+(
2
2
4+…+(
2
2
2(2n-1)]=
a2
4
×
1-(
1
2
)2n
1-
1
2
=
a2
2
•[1-(
1
4
)n]
點評:本題以圖形的變化為載體,考查了歸納推理的應(yīng)用,中位線定理,等比數(shù)列的前n項和公式,解題的關(guān)鍵是通過觀察、歸納與總結(jié),得到其中的規(guī)律,求出第n次圍出的正方形的邊長.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知a1=2,an=2-
1
an-1

(1)求證bn=
1
an-1
為等差數(shù)列;
(2)求cn=
1
bnbn+1
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,sin2A+sin2C-
2
sinAsinC=sin2B.
(1)求B;
(2)若A=75°,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位從一所學校招收某類特殊人才.對20位已經(jīng)選拔入圍的學生進行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:
邏輯思維能力

運動協(xié)調(diào)能力
一般 良好 優(yōu)秀
一般 2 2 1
良好 4 b 1
優(yōu)秀 1 3 a
例如,表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學生有4人.由于部分數(shù)據(jù)丟失,只知道從這20位參加測試的學生中隨機抽取一位,抽到運動協(xié)調(diào)能力優(yōu)秀的學生的概率為
3
10

(Ⅰ)求a,b的值;
(Ⅱ)從參加測試的20位學生中任意抽取2位,設(shè)運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學生人數(shù)為ξ,求隨機變量ξ的分布列及其數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2-kx+b,其中k,b為實數(shù).
(Ⅰ)當b=6時,不等式f(x)<0的解集為{x|2<x<m},求實數(shù)k及m的值;
(Ⅱ)當b=2時,是否存在實數(shù)k,使得不等式f(sinx)≥k-1對任意的實數(shù)x∈[0,
π
2
]恒成立?若存在,求k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,ABCD是矩形,PA⊥平面ABCD,M、N、E分別是AB、PC、CD的中點.
(1)求證:平面MNE∥平面PAD;
(2)求證:MN∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)已知(
x
-
2
3x
n展開式中所有項的二項式系數(shù)和為32,則其展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=4,b=2,cosA=
1
3
,則sinB的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-1,則f(x)=0處的切線方程為
 

查看答案和解析>>

同步練習冊答案