分析 (1)根據(jù)已知條件,求出滿足條件的正方形ABCD的面積,及事件“|AM|≤1”對應平面區(qū)域的面積,代入幾何概型計算公式,即可求出答案.
(2)以點A為坐標原點,AB為x軸,AD為y軸建立平面直角坐標系,如圖所示:任取兩個小于1的正數(shù)x,y,所有基本事件構成區(qū)域$Ω=\left\{{(x,y)|\left\{\begin{array}{l}0<x<1\\ 0<y<1\end{array}\right.}\right\}$,即正方形ABCD內(nèi)部;事件N=“以x,y與1為邊長能構成銳角三角形”包含的基本事件構成區(qū)域$N=\left\{{(x,y)|\left\{\begin{array}{l}0<x<1\\ 0<y<1\\ x+y>1\\{x^2}+{y^2}>1\end{array}\right.}\right\}$,即扇形BAD以外正方形ABCD以內(nèi)的陰影部分,由幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,二者相等即可估計π的值.
解答 解:(1)如圖,在邊長為1的正方形ABCD內(nèi)任取一點M,滿足條件的點M落在扇形BAD內(nèi)(圖中陰影部分),由幾何概型概率計算公式,有:$P(|MA|≤1)=\frac{{{S_{陰影部分}}}}{{{S_{正方形ABCD}}}}=\frac{π}{4}$,
故事件“|AM|≤1”發(fā)生的概率為$\frac{π}{4}$.
(2)以點A為坐標原點,AB為x軸,AD為y軸建立平面直角坐標系,如圖所示:任取兩個小于1的正數(shù)x,y,所有基本事件構成區(qū)域$Ω=\left\{{(x,y)|\left\{\begin{array}{l}0<x<1\\ 0<y<1\end{array}\right.}\right\}$,即正方形ABCD內(nèi)部;
事件N=“以x,y與1為邊長能構成銳角三角形”包含的基本事件構成區(qū)域$N=\left\{{(x,y)|\left\{\begin{array}{l}0<x<1\\ 0<y<1\\ x+y>1\\{x^2}+{y^2}>1\end{array}\right.}\right\}$,即扇形BAD以外正方形ABCD以內(nèi)的陰影部分;
由(1)知:$P(N)=1-\frac{π}{4}$,
全班56名同學每人隨機寫下一對都小于1的正實數(shù)x、y,可以看作在區(qū)域Ω中任取56個點;滿足“以x,y與1為邊長能構成銳角三角形”的(x,y)共有12對,即有12個點落在區(qū)域N中,
故其概率為$\frac{12}{56}=\frac{3}{14}$,用頻率估計概率,有$1-\frac{π}{4}≈\frac{3}{14}$,即$\frac{π}{4}≈\frac{11}{14}$,
∴$π≈\frac{11}{14}×4=\frac{22}{7}≈3.143$,即π的近似值為3.143.
點評 本題考查了隨機模擬法求圓周率的問題,也考查了幾何概率的應用問題,幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關,而與形狀和位置無關.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{n}^{2}}{4}$ | B. | $\frac{(n-1)^{2}}{4}$ | C. | $\frac{n(n-1)}{4}$ | D. | $\frac{n(n+1)}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 簡單隨機抽樣 | B. | 系統(tǒng)抽樣 | C. | 分層抽樣 | D. | 定點抽樣 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(2)<f(π)<f(5) | B. | f(π)<f(2)<f(5) | C. | f(2)<f(5)<f(π) | D. | f(5)<f(π)<f(2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com