=1,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C的值;
(2)組合數(shù)的兩個性質(zhì);
①=C. ②+C=C.
是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
(3)已知組知數(shù)是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時,∈Z
科目:高中數(shù)學(xué) 來源:2007年高考數(shù)學(xué)第一輪復(fù)習(xí)、集合與簡易邏輯 題型:013
函數(shù)f(x)=其中P、M為實數(shù)集R的兩個非空子集,又規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.給出下列四個判斷,其中正確判斷有
①若P∩M=,則f(P)∩f(M)=②若P∩M≠,則f(P)∩f(M)≠③若P∪M=R,則f(P)∪f(M)=R④若P∪M≠R,則f(P)∪f(M)≠R
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省湛江一中2007-2008學(xué)年度第一學(xué)期高三理科數(shù)學(xué)周考試題(三) 題型:013
函數(shù)其中P,M為實數(shù)集R的兩個非空子集,又規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.給出下列四個判斷:
①若P∩M=,則f(P)∩f(M)=;②若P∩M≠,則f(P)∩f(M)≠φ;
③若P∪M=R,則f(P)∪f(M)=R;④若P∪M≠R,則f(P)∪f(M)≠R.
其中正確判斷有
A.0個
B.1個
C.2個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高考總復(fù)習(xí)全解 數(shù)學(xué) 一輪復(fù)習(xí)·必修課程。ㄈ私虒嶒灠妫版 人教實驗版 B版 題型:013
函數(shù)f(x)=其中P、M為實數(shù)集R的兩個非空子集,又規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M},給出下列四個判斷:①若P∩M=,則f(P)∩f(M)=;②若P∩M≠,則f(P)∩f(M)≠;③若P∪M=R,則f(P)∪f(M)=R;④若P∪M≠R,則f(P)∪f(M)≠R.其中正確判斷有
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
22.規(guī)定C=,其中x∈R,m是正整數(shù),且 C=1,
這是組合數(shù)C(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C的值;
(2)設(shè)x>0中,當(dāng)x為何值時,取得最小值?
(3)組合數(shù)的兩個性質(zhì);
①C=C. ②C+C=C.
是否都能推廣到C(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com