分析 根據(jù){Sn-(n+1)2an}為常數(shù)列的性質(zhì):連續(xù)兩項的差為零列出式子,利用當(dāng)n≥2時an=Sn -Sn-1化簡,得到數(shù)列{an}的遞推公式,利用累積法和a1=1求出an.
解答 解:∵{Sn-(n+1)2an}為常數(shù)列,
∴當(dāng)n≥2時,[Sn-(n+1)2an]-[Sn-1-(n-1+1)2an-1]=0,
∴an-(n+1)2an+n2an-1=0,
∴n2an-1=n(n+2)an,則$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n}{n+2}$,
∴$\frac{{a}_{2}}{{a}_{1}}=\frac{2}{4}$,$\frac{{a}_{3}}{{a}_{2}}=\frac{3}{5}$,$\frac{{a}_{4}}{{a}_{3}}=\frac{4}{6}$,…,$\frac{{a}_{n-1}}{{a}_{n-2}}=\frac{n-1}{n+1}$,$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n}{n+2}$,
以上n-1個式子相乘得,$\frac{{a}_{n}}{{a}_{1}}=\frac{2×3}{(n+1)(n+2)}$,
又a1=1,則an=$\frac{6}{(n+1)(n+2)}$,
故答案為:$\frac{6}{(n+1)(n+2)}$.
點評 本題考查數(shù)列遞推公式的化簡,當(dāng)n≥2時an=Sn -Sn-1,常數(shù)列的性質(zhì)的應(yīng)用,以及累積法求數(shù)列的通項公式,考查化簡、變形能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$-1 | C. | 1+$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{3}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com