等邊三角形的邊長為3,點、分別是邊、上的點,且滿足(如圖1).將△沿折起到△的位置,使二面角為直二面角,連結、 (如圖2).

(Ⅰ)求證:平面;
(Ⅱ)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長,若不存在,請說明理由.

(Ⅱ)在線段上存在點,使直線與平面所成的角為,此時

解析試題分析:(Ⅰ)二面角為直二面角,要證平面;只要證;
(Ⅱ)假設存在點,使直線與平面所成的角為,根據(jù)直線與平面所成的角的定義作出
直線與平面所成的角,設的長為,用表示,在直角中,
根據(jù)勾股定理列出方程,若方程有解則存在,否則不存在.或借助已有的垂直關系;也可以為坐標原點建立空間直角標系,求出平面的一個法向量 ,利用建立方程,解這個方程探求 點的存在性.
試題解析:證明:(1)因為等邊△的邊長為3,且,
所以,. 在△中,,
由余弦定理得
. 因為,
所以.          3分
折疊后有,因為二面角是直二面角,
所以平面平面  ,又平面平面,
平面,, 所以平面.    6分

(2)解法1:假設在線段上存在點,使直線與平面所成的角為.
如圖,作于點,連結 ,
由(1)有平面,而平面,
所以,又, 所以平面,  
所以是直線與平面所成的角  ,          8分
,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點.

(1)求證:BC⊥平面PAC
(2)設QPA的中點,G為△AOC的重心,求證:QG∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面,的中點.

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,是正方形,平面,分別是的中點.

(1)在線段上確定一點,使平面,并給出證明;
(2)證明平面平面,并求出到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直三棱柱中,,,,D為BC中點.

(Ⅰ)求證:;
(Ⅱ)求證:;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點.求證:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,點分別是棱的中點.

(1)求證://平面;
(2)若平面平面,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知、、為不在同一直線上的三點,且,.

(1)求證:平面//平面;
(2)若平面,且,,求證:平面;
(3)在(2)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE=x,G是BC的中點。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖) .

(1) 當x=2時,求證:BD⊥EG ;
(2) 若以F、B、C、D為頂點的三棱錐的體積記為f(x),求f(x)的最大值;
(3) 當f(x)取得最大值時,求二面角D-BF-C的余弦值.

查看答案和解析>>

同步練習冊答案