【題目】已知函數(shù)
(1)當(dāng)a<0時,判斷f(x)在(0,+∞)上的單調(diào)性;
(2)當(dāng)a=﹣4時,對任意的實(shí)數(shù)x1 , x2∈[1,2],都有f(x1)≤g(x2),求實(shí)數(shù)m的取值范圍;
(3)當(dāng) , ,y=|F(x)|在(0,1)上單調(diào)遞減,求a的取值范圍.
【答案】
(1)解:a<0時,f′(x)=1﹣ >0,
故f(x)在(0,+∞)遞增
(2)解:若對任意的實(shí)數(shù)x1,x2∈[1,2],都有f(x1)≤g(x2),
則f(x)max≤g(x)min,
a=﹣4時,f(x)=x﹣ ,f′(x)=1+ >0,
f(x)在[1,2]遞增,
∴f(x)max=f(2)=0,
而g(x)=x2﹣2mx+2,x∈[1,2],
對稱軸x=m,
由題意得:
或 或 ,
解得:m≤1或1<m≤ 或m∈,
故m≤
(3)解:a=0時,顯然不成立,
a>0時,f(x)>0在(0, )恒成立且在(0, )上遞減,
∴ ,解得:a≥ ,
a<0時,|f(x)|要在(0, )遞減,
則 ,解得:a≤﹣ ,
綜上,a≤﹣ 或a≥
【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過a的符號,判斷函數(shù)的符號,求出函數(shù)的單調(diào)性即可;(2)問題轉(zhuǎn)化為f(x)max≤g(x)min , 求出f(x)的最大值,根據(jù)二次函數(shù)的性質(zhì)得到關(guān)于m的不等式組,解出即可;(3)通過討論a的范圍,得到關(guān)于a的不等式組,解出即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】讀下列所給程序,依據(jù)程序畫出程序框圖,并說明其功能.
INPUT “輸入三個正數(shù)a,b,c=”;a,b,c
IF a+b>c AND a+c>b AND b+c>a THEN
p=(a+b+c)/2
S=SQR(p*(p-a)*(p-b)*(p-c))
PRINT “三角形的面積S=”S
ELSE
PRINT “構(gòu)不成三角形”
END IF
END.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()的圖象與直線相切,當(dāng)恰有一個零點(diǎn)時,實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知☉O:x2+y2=1和定點(diǎn)A(2,1),由☉O外一點(diǎn)P(a,b)向☉O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點(diǎn),試求半徑取最小值時☉P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,函數(shù)的圖象在點(diǎn)處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn), , ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=f(x)的圖像為折線ABC,設(shè)g (x)=f[f(x)],則函數(shù)y=g(x)的圖像為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若過點(diǎn)可作三條直線與曲線相切,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ ,且函數(shù)y=f(x)的圖像經(jīng)過點(diǎn)(1,2).
(1)求m的值;
(2)判斷函數(shù)的奇偶性并加以證明;
(3)證明:函數(shù)f(x)在(1,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的方程為,直線的傾斜角為且經(jīng)過點(diǎn).
(1)以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com