9.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|=4$,$|\overrightarrow b|=3$且$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求$\overrightarrow a•\overrightarrow b$;
(2)求$|{\overrightarrow a-2\overrightarrow b}|$.

分析 (1)將$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$展開化簡即可得出$\overrightarrow{a}•\overrightarrow$的值;
(2)計算($\overrightarrow{a}-2\overrightarrow$)2,再開方即可得出|$\overrightarrow{a}-2\overrightarrow$|.

解答 解:(1)∵$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$,∴4${\overrightarrow{a}}^{2}$-3${\overrightarrow}^{2}$-4$\overrightarrow{a}•\overrightarrow$=61,
即4×16-3×9-4$\overrightarrow{a}•\overrightarrow$=61,∴$\overrightarrow{a}•\overrightarrow$=-6.
(2)($\overrightarrow{a}-2\overrightarrow$)2=${\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}$=16+24+36=76,
∴|$\overrightarrow{a}-2\overrightarrow$|=$\sqrt{76}$=2$\sqrt{19}$.

點評 本題考查了平面向量的數(shù)量積運算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.若等比數(shù)列{an}的各項均為正數(shù),a1+$\frac{2}{3}{a}_{2}$=3,a42=$\frac{1}{9}{a}_{3}{a}_{7}$,則a4=27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=loga(3x2-2ax)在區(qū)間[$\frac{1}{2}$,1]上是減函數(shù),則實數(shù)a的取值范圍(0,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=sin$\frac{π}{2}$x-1(x<0),g(x)=logax(a>0且a≠1 ).若它們的圖象上存在關(guān)于y軸對稱的點至少有3對,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥1\\ 3x+y≤3\\ x≥0\end{array}\right.$,則目標函數(shù)z=2x+y的最小值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若z(1+i)=i(其中i為虛數(shù)單位),則|z|等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知O,N,P在所在△ABC的平面內(nèi),且$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}|,\overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}$=$\overrightarrow 0$,且$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PA}•\overrightarrow{PC}$,則O,N,P分別是△ABC的(  )
A.重心  外心  垂心B.重心  外心  內(nèi)心
C.外心  重心  垂心D.外心  重心  內(nèi)心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)向量$\overrightarrow{AB}=(1,2),\overrightarrow{BC}=(-2,t)$,且$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,則實數(shù)t的值是( 。
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖所示,四棱錐P  ABCD的底面ABCD是平行四邊形,BD=$\sqrt{2}$,PC=$\sqrt{7}$,PA=$\sqrt{5}$,∠CDP=90°,E、F分別是棱AD、PC的中點.
(1)證明:EF∥平面PAB;
(2)求BD與PA所成角的大。

查看答案和解析>>

同步練習冊答案