A. | ${a_n}={({-1})^{n+1}}({2n+1})$ | B. | ${a_n}={({-1})^{n+1}}({2n-1})$ | C. | ${a_n}={({-1})^n}({2n+1})$ | D. | ${a_n}={({-1})^n}({2n-1})$ |
分析 根據(jù)已知中數(shù)列各項的符號是一個擺動數(shù)列,我們可以用(-1)n-1來控制各項的符號,再由數(shù)列1,3,5,7,9,11,…的可得數(shù)列為奇數(shù)列,為2n-1,由此可得數(shù)列的通項公式.
解答 解:數(shù)列1,3,5,7,9,11,…的可得數(shù)列為奇數(shù)列,為2n-1,
又∵數(shù)列所有的奇數(shù)項為正,偶數(shù)項為負
故可用(-1)n-1來控制各項的符號,
故數(shù)列的一個通項公式為 ${a_n}={({-1})^{n+1}}({2n-1})$
故選:B
點評 本題考查的知識點是等比數(shù)列的通項公式,其中根據(jù)已知數(shù)列的前幾項分析各項的共同特點是解答本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[2\sqrt{2}-3,\frac{56}{9}]$ | B. | $[\frac{56}{9},+∞)$ | C. | $(-∞,2\sqrt{2}-3]$ | D. | $(-∞,2\sqrt{2}-3]∪[\frac{56}{9},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $a=1,b=\sqrt{2},A={30°}$ | B. | $b=\sqrt{2},c=2,B={45°}$ | C. | a=1,b=2,c=3 | D. | a=3,b=2,A=60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 1 | C. | $\frac{1}{7}$ | D. | $\frac{1}{63}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com