15.函數(shù)f(x)=(sinx+cosx)2+cos2x的最小正周期為π.

分析 利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,得出結(jié)論.

解答 解:函數(shù)f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+$\sqrt{2}$sin(2x+$\frac{π}{4}$)的最小正周期為$\frac{2π}{2}$=π,
故答案為:π.

點(diǎn)評(píng) 本題主要考查三角恒等變換,函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.過(guò)點(diǎn)P(1,t)作曲線y=x3-3x的切線,若這樣的切線恰好能做2條,則實(shí)數(shù)t的值為-3或-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將三顆骰子各擲一次,設(shè)事件A為“恰好出現(xiàn)一個(gè)6點(diǎn)”,事件B為“三個(gè)點(diǎn)數(shù)都不相同”,則概率P(B|A)的值為( 。
A.$\frac{4}{5}$B.$\frac{5}{9}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.我省新高考采用“7選3”的選考模式,即從政治、歷史、地理、物理、化學(xué)、生物、技術(shù)這7門(mén)科目中選3門(mén)作為選考科目,那么所有可能的選考類(lèi)型共有35種;甲、乙兩人根據(jù)自己的興趣特長(zhǎng)以及職業(yè)生涯規(guī)劃愿景進(jìn)行選課,甲必選物理和政治,乙不選技術(shù),則兩人至少有一門(mén)科目相同的選法共有92種(用數(shù)學(xué)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)f(x)=|x+1|+|x-1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2-4a+12)對(duì)任意實(shí)數(shù)a恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.從3雙不同的鞋中任取2只,則取出的2只鞋不能成雙的概率為(  )
A.$\frac{3}{5}$B.$\frac{8}{15}$C.$\frac{4}{5}$D.$\frac{7}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.學(xué)校從參加高一年級(jí)期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿(mǎn)分為150分),數(shù)學(xué)成績(jī)分組及各組頻數(shù)如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在給出的樣本頻率分布表中,求A,B,C,D的值;
(2)估計(jì)成績(jī)?cè)?20分以上(含120分)學(xué)生的比例;
(3)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)?cè)赱135,150]的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)赱60,75)中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?40分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
樣本頻率分布表:
分組頻數(shù)頻率
[60,75)20.04
[75,90)30.06
[90,105)140.28
[105,120)150.30
[120,135)AB
[135,150]40.08
合計(jì)CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.運(yùn)行如圖所示的程序框圖,則輸出的S的值為(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校對(duì)高三部分學(xué)生的數(shù)學(xué)質(zhì)檢成績(jī)作相對(duì)分析.

(1)按一定比例進(jìn)行分層抽樣抽取了20名學(xué)生的數(shù)學(xué)成績(jī),并用莖葉圖(圖1)記錄,但部分?jǐn)?shù)據(jù)不小心丟失了,已知數(shù)學(xué)成績(jī)[70,90)的頻率是0.2,請(qǐng)補(bǔ)全表格并繪制相應(yīng)頻率分布直方圖(圖2).
 分?jǐn)?shù)段(分)[50,70)[70,90)[90,110)[110,130)[130,150)
 $\frac{頻率}{組距}$ 
0.005
 
0.010
 
0.020
 
0.010
 
0.005
(2)為考察學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)是否有關(guān)系,抽取了部分同學(xué)的數(shù)學(xué)成績(jī)與物理成績(jī)進(jìn)行比較,得到統(tǒng)計(jì)數(shù)據(jù)如表:
  物理成績(jī)優(yōu)秀 物理成績(jī)一般合計(jì) 
 數(shù)學(xué)成績(jī)優(yōu)秀 15 3 18
 數(shù)學(xué)成績(jī)一般 5 17 22
 合計(jì) 2020 40 
能夠有多大的把握,認(rèn)為物理成績(jī)優(yōu)秀與數(shù)學(xué)成績(jī)優(yōu)秀有關(guān)系?
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥K0 0.05 0.01 0.005 0.001
 K0 3.481 6.635 7.879 10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案