(2011•洛陽二模)巳知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩焦點,以線段F1F2為邊作正三角形PF1F2,若邊PF1的中點在橢圓上,則該橢圓的離心率是(  )
分析:設(shè)邊PF1的中點為Q,連接F2Q,Rt△QF1F2中,算出|QF1|=c且|QF2|=
3
c,根據(jù)橢圓的定義得2a=|QF1|+|QF2|=(1+
3
)c,由此不難算出該橢圓的離心率.
解答:解:由題意,設(shè)邊PF1的中點為Q,連接F2Q
在△QF1F2中,∠QF1F2=60°,∠QF2F1=30°
Rt△QF1F2中,|F1F2|=2c(橢圓的焦距),
∴|QF1|=
1
2
|F1F2|=c,|QF2|=
3
2
|F1F2|=
3
c
根據(jù)橢圓的定義,得2a=|QF1|+|QF2|=(1+
3
)c
∴橢圓的離心率為e=
c
a
=
2c
(1+
3
)c
=
3
-1
故選:A
點評:本題給出橢圓與以焦距為邊的正三角形交于邊的中點,求該橢圓的離心率,著重考查了解三角形、橢圓的標(biāo)準(zhǔn)方程和簡單性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)設(shè)函數(shù)f(x)的定義域為R,f(x)=
x,0≤x≤1
(
1
2
)x-1,-1≤x<0.
且對任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有四個不同零點,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)曲線y=x2ex+2x+1在點P(0,1)處的切線與x軸交點的橫坐標(biāo)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)已知函數(shù)f(x)=(ax2-2x+a)e-x
(I)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=-
f′(x)
e-x
-a-2,h(x)=
1
2
x2-2x-lnx
,若x>l時總有g(shù)(x)<h(x),求實數(shù)c范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)從8名女生,4名男生中選出3名學(xué)生組成課外小組,如果按性別比例分層抽樣,則不同的抽取方法種數(shù)為
112
112
. (用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)設(shè)函數(shù)f(x)=|2x+1|-|x-2|.
(1)若關(guān)于x的不等式a≥f(x)存在實數(shù)解,求實數(shù)a的取值范圍;
(2)若?x∈R,f(x)≥-t2-
52
t-1
恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案