【題目】在正方體AC1中,E,F分別為D1C1,B1C1的中點(diǎn),ACBDP,A1C1EFQ,如圖.

1)若A1C交平面EFBD于點(diǎn)R,證明:P,QR三點(diǎn)共線.

2)線段AC上是否存在點(diǎn)M,使得平面B1D1M∥平面EFBD,若存在確定M的位置,若不存在說明理由.

【答案】1)證明見解析(2)存在;MAP中點(diǎn)

【解析】

根據(jù)題意,證明P,QR是平面BDEF和平面BDD1B1的公共點(diǎn),利用平面的公理3即可得證;

存在點(diǎn)MAP中點(diǎn), 使平面B1D1M∥平面EFBD.AD中點(diǎn)G,AB中點(diǎn)H,連結(jié)GH,交AC于點(diǎn)M,連結(jié)D1G,B1H,利用線面平行的判定定理證明平面平面,由面面平行的判定定理即可得證.

1)證明:∵在正方體AC1中,E,F分別為D1C1,B1C1的中點(diǎn),

ACBDP,A1C1EFQ,A1C交平面EFBD于點(diǎn)R,

P,Q,R是平面BDEF和平面BDD1B1的公共點(diǎn),

PQ,R三點(diǎn)共線.

2)存在點(diǎn)MAP中點(diǎn), 使平面B1D1M∥平面EFBD.

證明如下:AD中點(diǎn)GAB中點(diǎn)H,連結(jié)GH,交AC于點(diǎn)M,連結(jié)D1G,B1H,如圖:

由題意得,GHEF,因?yàn)?/span>平面,平面,

所以平面,

因?yàn)?/span>B1HDE,同理可證,平面,

又因?yàn)?/span>, 由面面平行的判定定理可得,

∴平面GHB1D1∥平面BDEF,

∴線段AC上存在點(diǎn)M,使得平面B1D1M∥平面EFBD,且MAP中點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線Cy22pxp0)的準(zhǔn)線l上的點(diǎn)M(﹣10)的直線l1交拋物線CA,B兩點(diǎn),線段AB的中點(diǎn)為P

(Ⅰ)求拋物線C的方程;

(Ⅱ)若|MA||MB|λ|OP|2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過點(diǎn)P(1,2),傾斜角α=

(1)寫出圓C的普通方程和直線l的參數(shù)方程;

(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若有兩個(gè)零點(diǎn),求a的取值范圍;

2)設(shè),,直線的斜率為k,若恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間四邊形ABCD的對棱ADBC60°的角,且ADa,BCb,平行于ADBC的截面分別交AB,AC,CD,BDE、F、G、H,則截面EFGH面積的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有個(gè)粽子,其中豆沙粽個(gè),肉粽個(gè),白粽個(gè),這三種粽子的外觀完全相同,從中任意選取個(gè)

)求三種粽子各取到個(gè)的概率.

)設(shè)表示取到的豆沙粽個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,E是棱PC上的一點(diǎn).

(1)證明:平面平面 .

(2)若,F(xiàn)是PB的中點(diǎn),,求直線DF與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說明殘差平方和越大;

②對于相關(guān)系數(shù),越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越;

③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過點(diǎn);

是用來判斷兩個(gè)分類變量是否有關(guān)系的隨機(jī)變量,只對于兩個(gè)分類變量適合;

以上幾種說法正確的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若函數(shù) 在區(qū)間 內(nèi)恰有兩個(gè)零點(diǎn),求 的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案