【題目】設有兩個命題:p:關(guān)于x的不等式x2+2x-4-a≥0對一切x∈R恒成立;q:已知a≠0,a≠±1,函數(shù)y=-|a|x在R上是減函數(shù),若p∧q為假命題,p∨q為真命題,求實數(shù)a的取值范圍.
【答案】(-5,-1)∪(1,+∞)
【解析】試題分析:根據(jù)不等式x2+2x-4-a≥0對x∈R恒成立,求出命題p為真時a的范圍,再由指數(shù)函數(shù)的單調(diào)性求出q為真時的對應a的范圍,再由p∧q為假,p∨q為真,則p,q一真一假求出a的取值范圍.
試題解析:
∵不等式x2+2x-4-a≥0對x∈R恒成立,
∴x2+2x-4≥a對x∈R恒成立,
令y=x2+2x-4,
∴ymin=-5,∴a≤-5,
∴命題p即為p:a≤-5,
函數(shù)y=-|a|x(a≠0,a≠±1)在R上是減函數(shù),
∴|a|>1,∴a>1或a<-1,
∵p∧q為假,p∨q為真,
∴p,q一真一假,
∴或
∴-5<a<-1或a>1.
即實數(shù)的取值范圍是(-5,-1)∪(1,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】【2016高考四川文科】在平面直角坐標系中,當P(x,y)不是原點時,定義P的“伴隨點”為;當P是原點時,定義P的“伴隨點”為它自身,現(xiàn)有下列命題:
若點A的“伴隨點”是點,則點的“伴隨點”是點A.
單元圓上的“伴隨點”還在單位圓上.
若兩點關(guān)于x軸對稱,則他們的“伴隨點”關(guān)于y軸對稱
④若三點在同一條直線上,則他們的“伴隨點”一定共線.
其中的真命題是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等比數(shù)列中, ,且的等比中項為.
(1)求數(shù)列的通項公式;
(2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對任意恒成立?若存在,求出正整數(shù)的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一舉行了一次數(shù)學競賽,為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計本次競賽學生成績的中位數(shù)和平均分;
(3)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生,求所抽取的2名學生中至少有一人得分在[90,100]內(nèi)的頻率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人約定在中午12時到下午1時之間到某站乘公共汽車,又知這段時間內(nèi)有4班公共汽車.設到站時間分別為12:15,12:30,12:45,1:00.如果他們約定:
①見車就乘;
②最多等一輛.
試分別求出在兩種情況下兩人同乘一輛車的概率.假設甲乙兩人到達車站的時間是相互獨立的,且每人在中午12點到1點的任意時刻到達車站是等可能的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1.
(1)求f(x)的最小正周期;
(2)若函數(shù)f(x)的定義域為 ,求單調(diào)遞減區(qū)間和值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校一個生物興趣小組對學校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:
xi(月) | 1 | 2 | 3 | 4 | 5 |
yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
(參考公式: = , = ﹣ )
(1)在給出的坐標系中,畫出關(guān)于x,y兩個相關(guān)變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線性回歸直線方程 .
(3)預測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=sin2x+2cosx( )的最大值與最小值分別為( )
A.最大值 ,最小值為﹣
B.最大值為 ,最小值為﹣2
C.最大值為2,最小值為﹣
D.最大值為2,最小值為﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com