如圖,已知菱形的邊長(zhǎng)為,,.將菱形沿對(duì)角線折起,使,得到三棱錐.

(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得,并證明你的結(jié)論.   

(Ⅰ)證明:因?yàn)辄c(diǎn)是菱形的對(duì)角線的交點(diǎn),所以的中點(diǎn).又點(diǎn)是棱的中點(diǎn),

所以的中位線,.                    

因?yàn)?sub>平面,平面,

所以平面.                          

(Ⅱ)解:由題意,,因?yàn)?sub>,

所以.又因?yàn)榱庑?sub>,所以.

建立空間直角坐標(biāo)系,如圖所示.

.

所以                   

設(shè)平面的法向量為,

則有即:

,則,所以.          

因?yàn)?sub>,所以平面.    

平面的法向量與平行,

所以平面的法向量為.                      

,因?yàn)槎娼?sub>是銳角,

所以二面角的余弦值為.              

(Ⅲ)解:因?yàn)?sub>是線段上一個(gè)動(dòng)點(diǎn),設(shè),,

,所以,                              

,,

,即,

解得,                                      

所以點(diǎn)的坐標(biāo)為.(也可以答是線段的三等分點(diǎn),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市西城區(qū)高三二?荚?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分13分)
如圖,已知菱形的邊長(zhǎng)為,,.將菱形沿對(duì)角線折起,使,得到三棱錐.

(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市西城區(qū)高三二?荚?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分13分)

如圖,已知菱形的邊長(zhǎng)為,,.將菱形沿對(duì)角線折起,使,得到三棱錐.

(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得,并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知菱形的邊長(zhǎng)為,.將菱形沿對(duì)角線折起,使,得到三棱錐.

(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知菱形的邊長(zhǎng)為,,.將菱形沿對(duì)角線折起,使,得到三棱錐.

(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案