過拋物線y2=2x的焦點作直線交拋物線于P(x1,y1),Q(x2,y2)兩點,若x1+x2=3,則|PQ|=
4
4
分析:根據(jù)拋物線的定義可知PF=x1+
1
2
QF=x2+
1
2
,且PQ=PF+QF=x1+x2+1,代入可求
解答:解:∵拋物線y2=2x的焦點(
1
2
,0),準(zhǔn)線x=-
1
2

根據(jù)拋物線的定義可知PF=x1+
1
2
QF=x2+
1
2

∴PQ=PF+QF=x1+x2+1=4
故答案為:4
點評:本題主要考查了拋物線的定義(拋物線上的點到焦點與到準(zhǔn)線的距離相等),屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的焦點F作傾斜角為45°的直線交拋物線于A,B,則線段AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的焦點F作直線l交拋物線于A、B兩點,若
1
|AF|
-
1
|BF|
=1,則直線l
的傾斜角θ(0<θ≤
π
2
)
等于( 。
A、
π
2
B、
π
3
C、
π
4
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的焦點作一條直線與拋物線交于兩點,它們的橫坐標(biāo)之和等于2,則這樣的直線( 。
A、有且只有一條B、有且只有兩條C、有且只有三條D、有且只有四條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的對稱軸上的定點M(m,0),(m>0),作直線AB交拋物線于A,B兩點.
(1)試證明A,B兩點的縱坐標(biāo)之積為定值;
(2)若△OAB的面積的最小值為4,求m的值.

查看答案和解析>>

同步練習(xí)冊答案