在△ABC中,AC=2,BC=1,sinC=
35
,則AB的長為
 
分析:由題意可得,a=1,b=2,sinC=
3
5
,從而可求出cosC=±
4
5
,結(jié)合三角形的余弦定理c2=a2+b2-2abcosC可求AB
解答:解:設(shè)AC=b=2,BC=a=1,AB=c
∵sinC=
3
5
,∴cosC=±
4
5

當(dāng)cosC=
4
5
時(shí),由余弦定理可得c2=a2+b2-2abcosC=12+22- 2×2×1×
4
5
=
9
5

∴AB=c=
3
5
5

當(dāng)cosC=-
4
5
時(shí),由余弦定理可得,c2=1+4-2×2×1×(-
4
5
)=
41
5

∴AB=c=
205
5

故答案為:
3
5
5
205
5
點(diǎn)評:本題主要考查了余弦定理
c2a2b2-2abcosC
a2b2+c2-2bccosA
b2=a2+c2-2accosB
在解三角形中的應(yīng)用,屬于對基本公式的考查,解決問題的關(guān)鍵是要熟練掌握公式,并能靈活的選擇合適的公式進(jìn)行解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=2,BC=1,cosC=
34

(1)求AB的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=
3
,∠A=45°,∠C=75°,則BC的長度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=BC,AB=2,O為AB的中點(diǎn),沿OC將△AOC折起到△A′OC的位置,使得直線A′B與平面ABC成30°角.
(1)若點(diǎn)A′到直線BC的距離為l,求二面角A′-BC-A的大小;
(2)若∠A′CB+∠OCB=π,求BC邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于平面直角坐標(biāo)系內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,||AC||+||CB||>||AB||;
③在△ABC中,若∠A=90°,則||AB||2+||AC||2=||BC||2
其中錯(cuò)誤的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案