精英家教網 > 高中數學 > 題目詳情

已知四棱錐P-ABCD的底面是∠BAD=60°的菱形,如圖所示,則該四棱錐的主視圖(AB平行于主視圖的投影平面)可能是


  1. A.
  2. B.
  3. C.
  4. D.
D
分析:由已知中四棱錐P-ABCD的底面是∠BAD=60°的菱形,我們根據棱錐的正視圖為三角形,結合看不到的棱畫為虛線,看到的棱畫為實線,比照四個答案中的圖形,即可得到答案.
解答:由已知中的幾何體P-ABCD為四棱錐
故其正視圖的外邊框為三角形
又∵四棱錐P-ABCD的底面是∠BAD=60°的菱
∴PD棱在正視圖中看不到,故應該畫為虛線
PB棱在正視圖中可能看到,故應該畫為實線
故選D
點評:本題考查的知識點是簡單空間圖形的三視圖,其中要注意三視圖中看不到的棱(或輪廓線)畫為虛線,本題易忽略此點,而錯選C
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側面PBC⊥底面ABCD,O是BC的中點.
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為
10
5
,求PB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點,AE與BD交于O點,AB=BC=2CD=2,BD⊥PE.
(1)求證:平面PAE⊥平面ABCD; 
(2)若直線PA與平面ABCD所成角的正切值為
5
2
,PO=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點,PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年山東省濟寧一中高三(上)期末數學試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

同步練習冊答案