12.設(shè)函數(shù)f(x)=|x+1|+x-m的最小值是-3.
(1)求m的值;
(2)若$\frac{1}{a}+\frac{1}=2$,是否存在正實(shí)數(shù)a,b滿足$(a+1)(b+1)=\frac{7}{2}$?并說明理由.

分析 (1)化簡函數(shù)為分段函數(shù),利用函數(shù)的單調(diào)性求解函數(shù)的最小值,然后求解m即可.
(2)利用$\frac{1}{a}+\frac{1}=2$,轉(zhuǎn)化推出ab的范圍,化簡$(a+1)(b+1)=\frac{7}{2}$,推出ab的范圍,即可得到結(jié)果.

解答 解:(1)因?yàn)?f(x)=|{x+1}|+x-m=\left\{\begin{array}{l}2x+1-m,x≥-1\\-1-m,x<-1\end{array}\right.$,x≥-1時(shí),函數(shù)是增函數(shù),
所以ymin=-1-m=-3⇒m=2.
(2)∵$\frac{1}{a}+\frac{1}=2$,∴$a+b=2ab≥2\sqrt{ab}⇒ab≥1$,
∵$(a+1)(b+1)=a+b+ab+1=3ab+1=\frac{7}{2}$,
∴$ab=\frac{5}{6}<1$,矛盾.
所以不存在正實(shí)數(shù)a,b滿足條件.

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,函數(shù)的最值以及基本不等式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若$\frac{1+cosα}{sinα}$=2,則cosα-3sinα=( 。
A.-3B.3C.-$\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某漁業(yè)公司為了解投資收益情況,調(diào)查了旗下的養(yǎng)魚場和遠(yuǎn)洋捕撈隊(duì)近10個(gè)月的利潤情況.根據(jù)所收集的數(shù)據(jù)得知,近10個(gè)月總投資養(yǎng)魚場一千萬元,獲得的月利潤頻數(shù)分布表如下:
月利潤(單位:千萬元)-0.2-0.100.10.3
頻數(shù)21241
近10個(gè)月總投資遠(yuǎn)洋捕撈隊(duì)一千萬元,獲得的月利潤頻率分布直方圖如下:

(Ⅰ)根據(jù)上述數(shù)據(jù),分別計(jì)算近10個(gè)月養(yǎng)魚場與遠(yuǎn)洋捕撈隊(duì)的月平均利潤;
(Ⅱ)公司計(jì)劃用不超過6千萬元的資金投資于養(yǎng)魚場和遠(yuǎn)洋捕撈隊(duì),假設(shè)投資養(yǎng)魚
場的資金為x(x≥0)千萬元,投資遠(yuǎn)洋捕撈隊(duì)的資金為y(y≥0)千萬元,且投資養(yǎng)魚場的資金不少于投資遠(yuǎn)洋捕撈隊(duì)的資金的2倍.試用調(diào)查數(shù)據(jù),給出公司分配投資金額的建議,使得公司投資這兩個(gè)項(xiàng)目的月平均利潤之和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過點(diǎn)P(2,3)作圓(x-1)2+y2=1的兩條切線,與圓相切于A,B,則直線AB的方程為x+3y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若$a=\int_0^2{xdx}$,則二項(xiàng)式${(x-\frac{a+1}{x})^6}$展開式中的常數(shù)項(xiàng)是( 。
A.20B.-20C.-540D.540

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)不等式組$\left\{\begin{array}{l}{y≤x+1}\\{2x+y≤7}\\{x+2y≥5}\end{array}\right.$,表示的平面區(qū)域?yàn)镈,若D中存在點(diǎn)在曲線y=ax2上,則實(shí)數(shù)a的取值范圍是( 。
A.[1,2]B.[$\frac{1}{3}$,3]C.[$\frac{1}{6}$,2]D.[$\frac{1}{9}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,∠ADC=90°,AD∥BC,$\frac{1}{3}$BC=$\frac{1}{2}$CD=AD=1,PA⊥平面ABCD,PA=2AD,E是線段PD上的點(diǎn),設(shè)PE=λPD,F(xiàn)是BC上的點(diǎn),且AF∥CD
(Ⅰ)若λ=$\frac{2}{3}$,求證:PB∥平面AEF
(Ⅱ)三棱錐P-AEF的體積為$\frac{1}{3}$時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=\sqrt{\frac{x-3}{2-x}}$的定義域是( 。
A.{x|2≤x≤3}B.{x|x≤2或x≥3}C.{x|2<x≤3}D.{x|x<2或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=xlnx,e為自然對數(shù)的底數(shù).
(Ⅰ)求曲線y=f(x)在x=e-3處的切線方程;
(Ⅱ)關(guān)于x的不等式f(x)≥λ(x-1)在(0,+∞)恒成立,求實(shí)數(shù)λ的取值范圍.
(Ⅲ)關(guān)于x的方程f(x)=a有兩個(gè)實(shí)根x1,x2,求證:|x1-x2|<$\frac{3}{2}$a+1+$\frac{1}{2{e}^{3}}$.

查看答案和解析>>

同步練習(xí)冊答案