分析 由題意可得ω•$\frac{π}{4}$+$\frac{π}{3}$≥$\frac{π}{2}$,且ω•$\frac{π}{2}$+$\frac{π}{3}$≤$\frac{3π}{2}$,求得ω的范圍.
解答 解:由于函數(shù)y=sin(ωx+$\frac{π}{3}$)(ω>0)在[$\frac{π}{4}$,$\frac{π}{2}$]上是減函數(shù),
∴ω•$\frac{π}{4}$+$\frac{π}{3}$≥$\frac{π}{2}$,且ω•$\frac{π}{2}$+$\frac{π}{3}$≤$\frac{3π}{2}$,求得$\frac{2}{3}$≤ω≤$\frac{7}{3}$,
故答案為:$[{\frac{2}{3},\frac{7}{3}}]$.
點評 本題主要考查正弦函數(shù)的減區(qū)間,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞) | B. | [-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$] | C. | (-∞,-$\frac{\sqrt{3}}{2}$]∪($\frac{\sqrt{3}}{2}$,+∞) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x3-1 | B. | f(x)=x+cosx | C. | f(x)=xsinx | D. | f(x)=lg(x+$\sqrt{{x}^{2}+1}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com