棱錐被平行于底的平面分成體積相等的三部分.求這棱錐的高被分成三部分的比.

答案:
解析:

  解析:設(shè)棱錐的高為h,它被截成的三部分自上而下設(shè)為h1,h2,h3,則有

  ()3,()3=2,()3

  所以h1h,h2=(-1)h1(-1)h,

  h3h.

  所以h1∶h2∶h3=1∶(-1)∶().

  說明求體積之比或面積之比常用相似比.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

棱錐被平行于底面的平面所截,當(dāng)截面分別平分棱錐的側(cè)棱、側(cè)面積、體積時,相應(yīng)的截面面積分別為S1、S2、S3,則( 。
A、S1<S2<S3B、S3<S2<S1C、S2<S1<S3D、S1<S3<S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個正棱錐被平行于底面的平面所截,若截得的截面面積與底面面積的比為1:2,則此正棱錐的高被分成的兩段之比為( 。
A、1:
2
B、1:4
C、1:(
2
+1)
D、1:(
2
-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個棱錐被平行于底面的平面所截,如果截面面積與底面面積之比為1:2,則截面把棱錐的一條側(cè)棱分成的兩段之比是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐P-ABC的側(cè)面PAC是底角為45°的等腰三角形,PA=PC,且該側(cè)面垂直于底面,∠ACB=90°,AB=10,BC=6,B1C1=3.
(1)求證:二面角A-PB-C是直二面角;
(2)求二面角P-AB-C的正切值;
(3)若該三棱錐被平行于底面的平面所截,得到一個幾何體ABC-A1B1C1,求幾何體ABC-A1B1C1的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案